Two-loop QED corrections to the bound-electron g factor involving the magnetic loop

Vincent Debierre Bastian Sikora Halil Cakir
Natalia S. Oreshkina Zoltán Harman Christoph H. Keitel

International Conference on Precision Physics and Fundamental Fysical Konstants
Wednesday, June 12, 2019
The \(g \) factor of bound electrons

Provides a measure of the Zeeman splitting of energy levels

\[
\Delta E = g \frac{\mu B}{\hbar} \langle \psi | \mathbf{J} \cdot \mathbf{B} | \psi \rangle
\]
The g factor of bound electrons

Provides a measure of the Zeeman splitting of energy levels

$$\Delta E = g \frac{\mu_B}{\hbar} \langle \psi | J \cdot B | \psi \rangle$$

Measurement in Penning trap

Precision: 10^{-11} for medium-light H-like ions

Soon to come: same precision for medium and heavy H-like ions (e.g. Ca, Xe, Pb)

→ Motivates improvements of theory
The g factor of bound electrons

Provides a measure of the Zeeman splitting of energy levels

$$\Delta E = g \frac{\mu_B}{\hbar} \langle \psi | J \cdot B | \psi \rangle$$

Measurement in Penning trap

Precision: 10^{-11} for medium-light H-like ions

Soon to come: same precision for medium and heavy H-like ions (e.g. Ca, Xe, Pb)

→ Motivates improvements of theory

QED calculations

• Perturbative approach: free $e^- +$ perturbative binding to nucleus (series in $(Z \alpha)$)
• Non-perturbative approach: bound state QED

Loops from QED are to be treated perturbatively in all approaches (series in α)

Current knowledge of two-loop corrections:

 $(Z \alpha)^5$ [A. Czarnecki, M. Dowling, J. Piclum, R. Szafron, Phys. Rev. Lett. 120, 043203 (2018)]
• Non-perturbative approach: partial knowledge
Two-loop QED corrections

50 total diagrams
(29 inequivalent diagrams)

Introduction

Two-loop QED corrections

50 total diagrams
(29 inequivalent diagrams)

Diagrams with 0&1 self-energy loops
→ Treated in
(with free VP (e^-e^+) loops)
Introduction

Two-loop QED corrections

50 total diagrams
(29 inequivalent diagrams)

Diagrams with 0&1 self-energy loops
\rightarrow Treated in
(with free VP (e^-e^+) loops)

Diagrams with 2 self-energy loops
\rightarrow Calculation in progress
[B. Sikora, Ph.D. thesis,
Ruprecht-Karls-Universität Heidelberg (2018)]
Introduction

Two-loop QED corrections

50 total diagrams
(29 inequivalent diagrams)

Diagrams with 0&1 self-energy loops → Treated in
(with free VP \((e^- e^+)\) loops)

This work: revisit diagrams that vanished in the free VP loop approach & calculate lowest nonvanishing contribution