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Diagrams to be computed

Electric loop Magnetic (Non-vertex) self-energy (Vertex) self-energy
+ + +

magnetic loop loop-after-loop magnetic loop magnetic loop

Interest for the g factor
Provides high-precision tests of quantum electrodynamics and the Standard Model.
Can help improve determination of fundamental constants.

Basics
There are twenty-nine (29) different diagrams [1, 2, 3] that contribute to
the bound-electron g factor at the two-loop level. Four diagrams feature the
so-called magnetic loop, which vanishes at the free-loop level.
→ Lowest nonvanishing order: the external magnetic potential is scattered in
the Coulomb field of the nucleus before interacting with the bound electron.

The one-loop magnetic loop correction has been calculated [4, 5]. In the
process, Lee et al. derived an analytical expression for the light-by-light scat-
tering amplitude of a low-energy photon in the Coulomb field, which we use here.

We focus on the simplest case of the 1s state.

Electric loop+magnetic loop correction
The treatment is based on the simpler case of the one-loop magnetic loop correc-
tion [4, 5], with a modified electronic current. The electric loop-corrected wave
function is computed numerically at the Uehling approximation (i.e. lowest-order
within the vacuum polarisation loop). The Uehling potential is well known and
the correction to the wave functions can be computed with relative ease.

Magnetic loop-after-loop correction

We also start from the one-loop magnetic loop correction [4, 5], but with an extra
vacuum polarisation loop computed at the free-loop (Uehling) approximation.
The vacuum polarisation-dressed photon propagator is well known [2].

Non-vertex self-energy+magnetic loop correction

This diagram is split [6] between a reducible contribution (the intermediate state
of the bound electron between the self-energy loop and the magnetic loop is the
reference state 1s) and an irreducible contribution (all other allowed intermediate
states).

The treatment of the reducible correction is based on previously computed dia-
grams:

∆gSE−ML
1s(red) =

∆gML
1s

g1s
∆gSE
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where ∆gML
1s is the one-loop magnetic loop correction [4, 5], ∆gSE

1s(red) is the

reducible one-loop self-energy correction [6], and g1s is the Dirac value of the
bound g factor.

The treatment of the irreducible correction is similar to that of the electric
loop+magnetic loop correction. The electric loop-corrected wave function is
replaced by the self-energy-corrected wave function, the computation of which
is a major numerical challenge [7].

Vertex self-energy+magnetic loop correction

The vertex correction is split [6] between a zero-potential term ∆g
(SE−ML)(0)
1s(ver)

(wherein the electron does not interact with the Coulomb field of the nucleus

under the self-energy loop) and a many-potential term ∆g
(SE−ML)(1+)
1s(ver) (which is

a sum over all strictly positive numbers of interactions with the Coulomb field
under the loop).

The zero-potential term is ultraviolet-divergent, before renormalisation, which is
carried out by using the renormalised vertex function ΓR [6]:

∆g
(SE−ML)(0)
1s(ver) =

2me

m |B|

∫
dp

(2π)3

∫
dp′

(2π)3ψ̄ (p) ΓR (p, p′) ·AML (p− p′)ψ (p′) ,

where m = ±1/2 is the projection of the total (= spin) electron angular mo-
mentum, B is the (homogeneous, constant) external magnetic field, ψ is the
bound wave function of the 1sm state and AML is the light-by-light-scattered
vector potential, expressed in terms of the light-by-light scattering amplitude
[5]. We compute integrals of products of up to five spherical harmonics over two
different solid angles. We are left with a triple spatial integral (2 radial, 1 an-
gular) to be performed numerically, on top of a numerical 1-Feynman parameter
integral.

The many-potential term is computed numerically similarly to the corresponding
term in the one-loop self-energy correction [6]. We exploit the fact that the
magnetic loop preserves the angular structure of the external vector potential.

Some preliminary results
Upcoming experiments have been announced on heavy hydrogenlike ions at
HITRAP [8] and ALPHATRAP [9]. The corrections computed here increase
strongly with increasing Z. For experimental relevance we present results for
two high-Z hydrogenlike ions (Xe53+ and Pb81+).

Z ∆gEL−ML
1s ∆gMLAL

1s ∆gSE−ML
1s(irr) ∆gSE−ML

1s(ver+red)

54 1.4344(26)× 10−9 6.019(1)× 10−10 −5.3135(20)× 10−9 1.7572(25)× 10−9

82 2.0982(8)× 10−8 6.845(3)× 10−9 −5.5379(20)× 10−8 −9.435(23)× 10−9
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[9] S. Sturm, M. Vogel, F. Köhler-Langes, W. Quint, K. Blaum, and G. Werth, Atoms 5 (2017).

Vincent Debierre Bastian Sikora Halil Cakir Natalia S. Oreshkina Zoltan Harman Christoph H. Keitel Max Planck Institute for Nuclear Physics

Two-loop QED corrections to the bound-electron g factor involving the magnetic loop

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.62.032510
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.62.032510
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.042502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.043203
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.71.052501
http://www.nrcresearchpress.com/doi/abs/10.1139/p07-024
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.052503
https://link.springer.com/article/10.1023/A%3A1011908332584
http://www.mdpi.com/2218-2004/5/1/4

