Testing fundamental interactions with the helium atom

Krzysztof Pachucki & QED Theory Group

University of Warsaw

FFK-2019 Tihany, Hungary, June 11, 2019

Hydrogen	Helium	QED Theory Group
•0		

Testing fundamental interactions with light atoms and molecules

- Garching 2010: $\nu(1S 2S)_{\rm H} = 2\,466\,061\,413\,187\,035(10)\,{\rm Hz}$
- What is the accuracy of theoretical predictions ?

•
$$\nu = \nu(Ry, r_p, m/M, \alpha)$$

•
$$\Delta \nu_{\rm fs} = \frac{7}{6} \operatorname{Ry} c (Z \alpha)^4 \frac{r_p^2}{\chi^2} - 95.5 \, {\rm Hz}[\sim \alpha] - 929 \, {\rm Hz}[\sim \alpha^2]$$

- the ultimate theoretical predictions are limited by the proton polarizabilities
- the proton radius puzzle comes from the fact, that there is no any other narrow (optical) transition in H: $\Gamma(2P) \approx 100 \text{ MHz}$

•
$$\nu(1S-2S)_{He^+} = ???$$

courtesy of Eite Tiesinga, NIST (2019).

Hydrogen oo	Helium ●000	QED Theory Group
Helium		

- has several very narrow transitions:
- $E(1^{1}S_{0}-2^{1}S_{0}) = 4\,984\,872\,315.(48)$ MHz [Bergeson 98]
- $E(2^1S_0 2^3S_1) = 192510702.14872(20)$ MHz [Rengelink 2018]
- $E(2^3S_1 2^3P_0) = 276764094.6572(14)$ MHz [Zheng 2017]
- that can in principle be calculated as accurately as $E(1S 2S)_H$, but the electron correlation makes calculations more difficult
- at present $\alpha^7 m$ is yet unknown...

Hydrogen

Helium ○●○○ QED Theory Group

$2^3S - 2^3P$ transition in ⁴He in MHz

	(<i>m</i> / <i>M</i>) ⁰	(<i>m</i> / <i>M</i>) ¹	(<i>m/</i> /	//) ² Sum
α^2	–276 775 637.536	102 903.459	-4.781	-276 672 738.857
α^4	-69 066.189	-6.769	-0.003	-69 072.961
α^{5}	5234.163	-0.186	—	5 233.978
α^{6}	87.067	-0.029		87.039
α^7	-8.0 (1.0)) —		-8.0(1.0)
FNS	3.427			3.427
NPOL	-0.002			-0.002
Theory				-276 736 495.41 (1.00)
Exp.	[Florence.2004]			-276 736 495.649 5 (21)
Exp.	[Zheng.2017]			-276 736 495.600 0 (14

- the calculation of α⁷ m correction will give possibility for the absolute charge radius determination of the helium nucleus
- and other nuclei from $2^3S 2^3P$ in heliumlike ions
- but there is intriguing discrepancy for a similar transition: $E(3^3D_1 - 2^3P_0)_{exp} = 510\,059\,755.352(28)$ MHz $E(3^3D_1 - 2^3P_0)_{theo} = 510\,059\,754.2(0.7)$ MHz

and all the other transitions involving 3D state

 Even more intriguing discrepancies are observed among the ³He - ⁴He isotope shifts Hydrogen

³He - ⁴He isotope shift

picture by Youri van der Werf

QED theory group

- KP, University of Warsaw
- M. Puchalski, Poznań University
- J. Komasa, Poznań University
- V. A. Yerokhin, St. Petersburg Technical University
- V. Patkóš, Charles University, Praga
- P. Czachorowski, University of Warsaw (PhD student)
- M. Siłkowski, University of Warsaw (PhD student)