Towards high-precision spectroscopy of sympathetically cooled H_2^+

Julian Schmidt¹, Thomas Louvradoux¹, Mohammad Haidar¹, Johannes Heinrich¹, Jean-Philippe Karr², Laurent Hilico¹,²

¹Laboratoire Kastler Brossel, Sorbonne Université, ENS, CNRS ; 4 place Jussieu, Case 74, 75005 Paris, France
²Département de Physique, Univ EVRY Université Paris Saclay, rue du père André Jarlan 91025 Evry, France

Motivations
- High-resolution spectroscopy of rovibrational transitions in H_2^+ or HD⁺ allows for precise tests of molecular QED and determination of m_i/m_n at the -0.01 ppb level and shed light on the proton radius puzzle.

\[\nu = c E_m \left(\left(\nu_p + \nu_A + \nu_b \right) + \nu (\nu_a + \nu_b + \nu + \frac{1}{2}) \right)^2 \] and \[E_m = \frac{1}{2} \mu \omega_0^2 \]

- Comparison of H_2^+ and HD⁺

<table>
<thead>
<tr>
<th>Line width</th>
<th>Transition</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4 Hz</td>
<td>ν_A</td>
<td>Weak two-photon transition</td>
</tr>
<tr>
<td>10^5 Hz</td>
<td>ν_B</td>
<td>Strong two-photon transition</td>
</tr>
</tbody>
</table>

Systematic effects Light shift 1×10^{-5}

HD⁺-two-photon spectroscopy in the Lamb-Dicke regime

Contributions to uncertainty:
- $(v=0, L=2) \rightarrow (v'=1, L'=2)$ in H_2^+

\[\lambda = \frac{2 \pi}{\nu} \]

Theory: Transition frequencies from $(v=0, L=2) \rightarrow (v'=1, L'=2)$ in H_2^+

\[\nu_{v',L'} = \frac{2 \pi}{\lambda} \]

Experimental method

- **Step 1:** State-selective production of cold H_2^+ molecular ions
 - Molecular beam injects H_2^+ molecules into ion trap
 - $(3+1)$ Resonant multiphoton ionization (REMPI) using a pulsed laser at 303 nm at the center of an ion trap
 - H_2^+ is sympathetically cooled by laser cooled Be^+ ions

- **Step 2:** REMPD spectroscopy
 - Drive 2-photon transition from $v=0, L=2 \rightarrow v=1, L=2$ with cavity-enhanced mid-IR spectroscopy laser (9.17 µm)
 - H_2^+ ions excited to the $v=1$ state are dissociated by 213 nm laser and lost from the trap
 - Count number of H_2^+ ions before and after spectroscopy and dissociation

Experimental setups

- **Hyperbolic trap features:**
 - Smaller hyperbolic trap size
 - Ion trap ready
 - Micromotion minimisation by fluorescence/RF correlations
 - Micromotion minimisation by fluorescence/RF correlations

- **Linear trap features:**
 - In situ ionisation of H_2^+ by electron impact or REMPI
 - Sympathetic cooling with Be^+
 - Detection: imaging of mixed Coulomb crystals ($Be^+ + H_2^+$)

Conclusions and outlook
- Theory: m_i/m_n can be obtained from hydrogen molecular ion spectroscopy with 15 ppt accuracy
- Ion trap ready
- Micromotion minimisation by fluorescence/RF correlations
- H_2^+ spectroscopy enhancement cavity implemented
- Addition of the H_2^+ source to the linear trap setup
- Find best method to measure a fractionnal loss of H_2^+
- State selected H_2^+ ion creation inside the laser cooled Be^+ ion cloud
- Search for H_2^+ two-photon signal

First Be^+ ion clouds
- With H_2^+ ions from background gas
- Beryllium ion loading
 - with e-gun or non-resonant photoionization with 213 nm laser
 - from oven (resistive heating) or ablation (532 nm pulsed laser)

Comparison of ion crystal images with simulations
- For given CCD image, what is the number of Be^+, H_2^+, H_2^+ ions?
 - Compare with molecular dynamics simulations
 - Tickle curve (fluorescence signal depends on H_2^+ number)
 - Count Be^+ ions (blobs) with image analysis, then identify H_2^+ dark ions ("empty sites") in CCD image:
 - by estimating the surface
 - with pattern recognition

- MD simulated CCD image $100 \text{ Be}^+ + 10 \text{ H}_2^+$
- Blob detection of 95 Be²⁺ ions of flat crystal (CCD image)

Contributions to uncertainty:

- $(v=0, L=2) \rightarrow (v'=1, L'=2)$ in H_2^+

State-selective production of H_2^+ molecular ions
- Experimental results from hyperbolic trap setup (see "Experimental setups")

H₂ reservoir and ion signal (arb. u.)

- H_2 reservoir
- Ion signal (arb. u.)
- rem. ion fract.