

A New Experiment to measure the g-Factors of ³He⁺ and ³He²⁺

Antonia Schneider, Andreas Mooser, Alexander Rischka, Klaus Blaum, Stefan Ulmer, Jochen Walz

FFK-2019

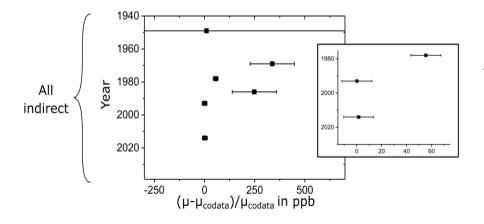
JGU

Motivation

First direct high-precision measurement of ³He²⁺ nuclear magnetic moment with ppb or better

- Establish hyper-polarized ³He NMR probes as independent standard for precision magnetometry
- $\Delta B/B = 10^{-12}$ in seconds using hyperpolarized ³He

	Water NMR		³ He
Dependence on temperature	1	>	1/100
Dependence on probe shape	1	>	1/1000
Diamagnetic shielding	1 measured	>	1/10 calculated


Rudzinski A., et al. *J.Chem. Phys.* **130** 244102 (2009) Nikiel A., *et al.* Eur. Phys. J. D **68** 330 (2014)

Motivation

First direct high-precision measurement of ³He²⁺ nuclear magnetic moment with ppb or better

- Establish hyper-polarized ³He NMR probes as independent standard for precision magnetometry
- $\Delta B/B = 10^{-12}$ in seconds using hyperpolarized ³He

	Water NMR		³ He
Dependence on temperature	1	>	1/100
Dependence on probe shape	1	>	1/1000
Diamagnetic shielding	1 measured	>	1/10 calculated

<u>However</u>

- Comparisons of ³He and H₂O probe only
- μ_{He} known to 1.2*10⁻⁸ only

limited by knowledge of shielded proton magnetic moment

Rudzinski A., et al. *J.Chem. Phys.* **130** 244102 (2009) Nikiel A., *et al.* Eur. Phys. J. D **68** 330 (2014)

Test of diamagnetic shielding parameter

• Ratio of NMR frequencies (known to 3ppb)

$$\frac{\omega_{He}}{\omega_{H2}} = \frac{\mu_{He}(1 - \sigma_{He})}{\mu_p(1 - \sigma_{H2})}$$

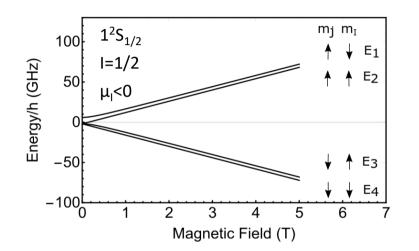
ppb measurement of μ_{He} will allow for test of theoretical shielding parameter ratio with ppb precision

Test of diamagnetic shielding parameter

• Ratio of NMR frequencies (known to 3ppb)

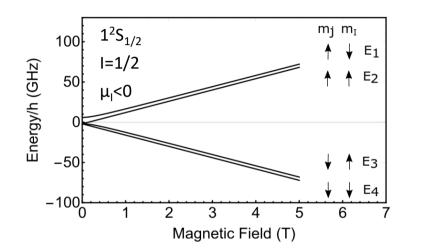
$$\frac{\omega_{He}}{\omega_{H2}} = \frac{\mu_{He}(1 - \sigma_{He})}{\mu_p(1 - \sigma_{H2})}$$

 \implies ppb measurement of μ_{He} will allow for test of theoretical shielding parameter ratio with ppb precision


- Discrepancies between σ_H obtained from comparison to ³He or H₂ Can be explained by:
 - 100ppb shift of μ_{He}
 - Inconsistencies in diamagnetic shielding scales for protons

Flowers, et al. Metrologia **30** 75 (1993) Jackowski, et al. J. Phys Chem. A **114** 2471 (2010)

Hyperfine splitting of ³He⁺

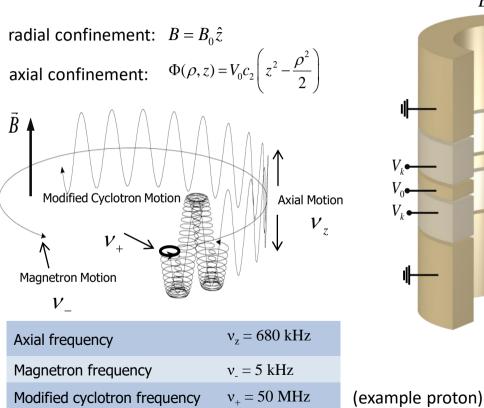


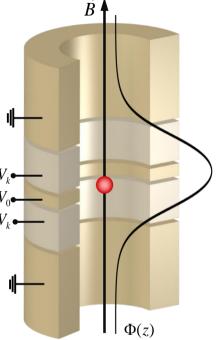
- Determination of:
 - Zero-field ground-state hyperfine splitting $\Delta E^{\rm HFS}$
 - Nuclear and electronic g-factor
- ΔE^{HFS} known to 1.1 ppb (Schuessler et al., Phys. Rev. 187 5 (1968)) We aim for measurement of order 100ppt

æ

Hyperfine splitting of ³He⁺

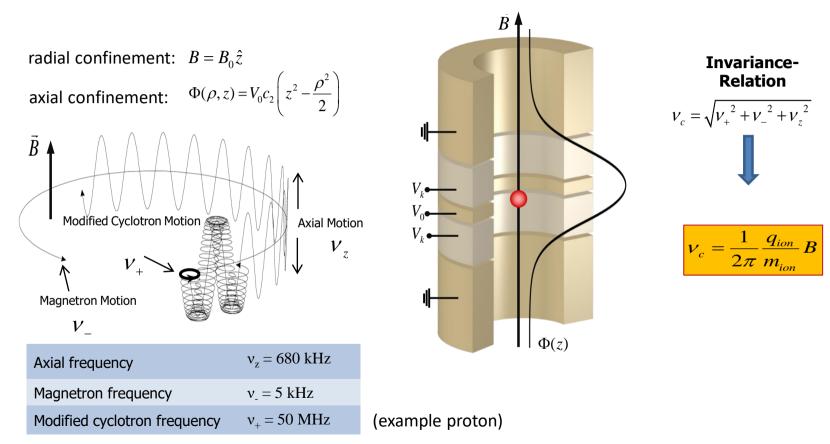
- Determination of:
 - Zero-field ground-state hyperfine splitting $\Delta E^{\rm HFS}$
 - Nuclear and electronic g-factor
- ΔE^{HFS} known to 1.1 ppb (Schuessler et al., Phys. Rev. 187 5 (1968)) We aim for measurement of order 100ppt


$$\Delta E^{HFS} = E^F (1 + \delta^{QED} + \delta^{rec} + \delta^{hvp} + \delta^{nucl})$$

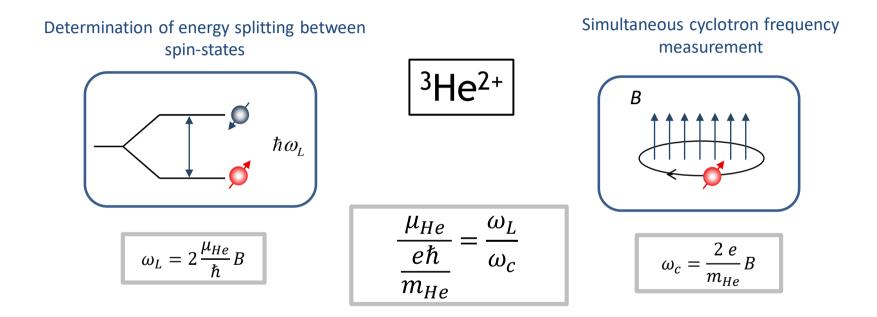

with Fermi contact energy E^{F}

 \Rightarrow determination of e.g. nuclear structure effect δ^{nucl}

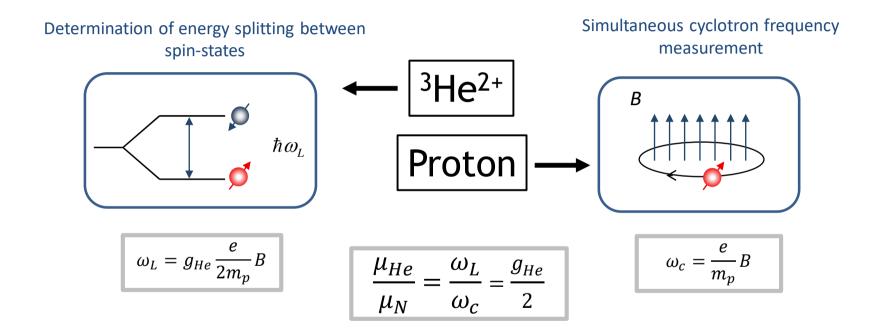
Main Tool: Penning Trap



Ø


Main Tool: Penning Trap

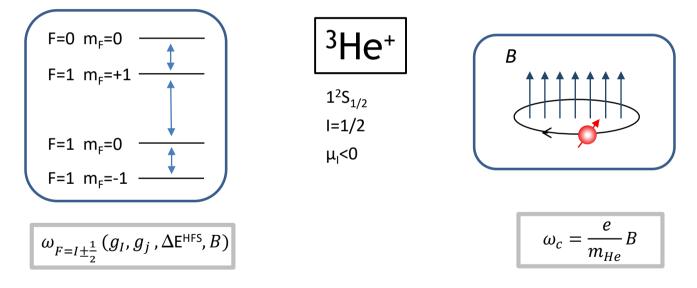
Magnetic Moments in Penning Traps



To determine g-factor of ³He – either proton-helion mass ratio needed (known to 30ppt) – or

Magnetic Moments in Penning Traps

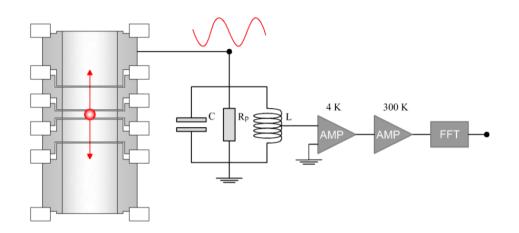
Principle demonstrated for antiproton magnetic moment - Smorra et al. Nature 550, 371 (2017)



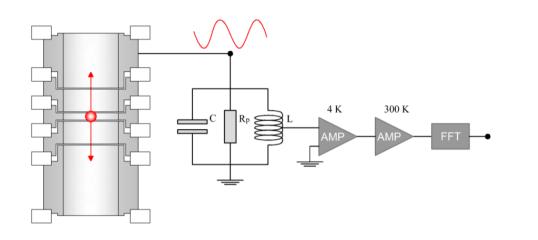
Magnetic Moments in Penning Traps

Determination of energy splitting between spin-states

Simultaneous cyclotron frequency measurement



B-field independent measurement of g_{I} , g_{i} and ΔE^{HFS}


Image Current Detection

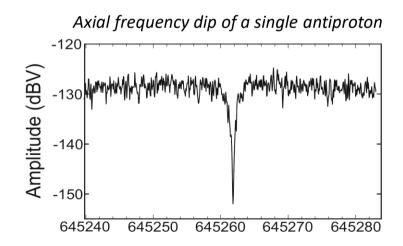
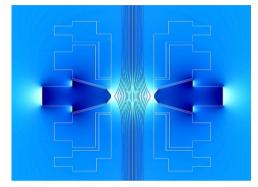


Image Current Detection

- Thermal equilibrium: dip at eigenfrequency of the ion
- The particle dissipates energy and is resistively cooled



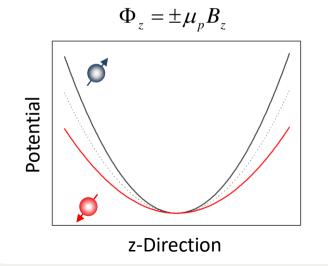
Detection of Spin-State - Continuous Stern-Gerlach Effect

Introduce magnetic field inhomogeneity

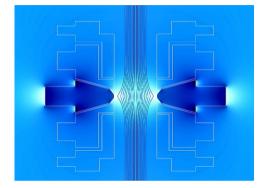
$$\boldsymbol{B}_z = \boldsymbol{B}_0 + \boldsymbol{B}_2 \left(z^2 - \frac{\rho^2}{2} \right)$$

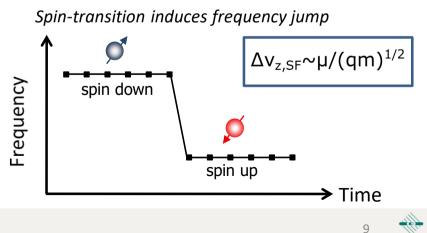
Ring electrode made of CoFe

Spin-transition induces frequency jump



Detection of Spin-State - Continuous Stern-Gerlach Effect


Introduce magnetic field inhomogeneity


$$B_z = B_0 + B_2 \left(z^2 - \frac{\rho^2}{2} \right)$$

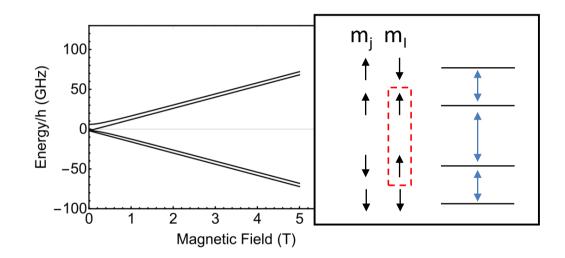
Spin-dependent motion of ion

Ring electrode made of CoFe

Spin-State Detection ³He⁺

Detect electron spin-transition using cont. Stern-Gerlach effect

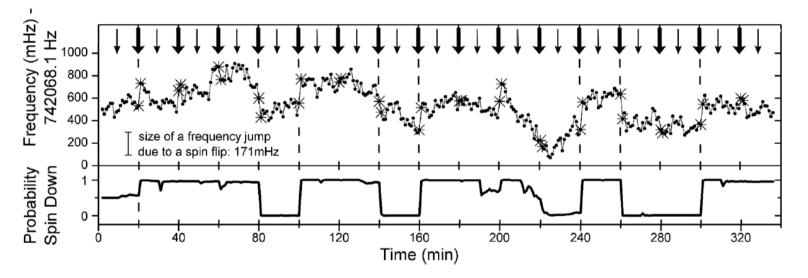
 $\Delta v_{z,SF}$ of order 10*Hz*, much easier to detect compared to 90mHz



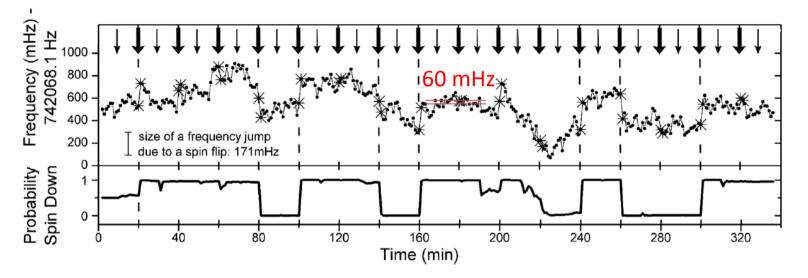
Spin-State Detection ³He⁺

Detect electron spin-transition using cont. Stern-Gerlach effect

• $\Delta v_{z,SF}$ of order 10*Hz*, much easier to detect compared to 90mHz



Map readout of nuclear spin-state onto detection of electronic spin-transition

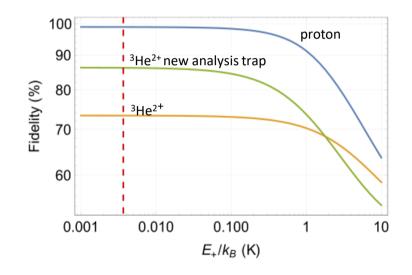

Example measurement with proton:

A. Mooser *et al.*, Phys. Rev. Lett. **110**, 140405 (2013).

Example measurement with proton:

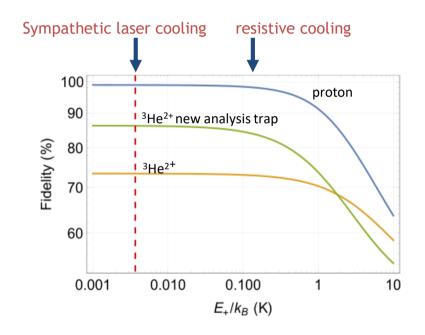
Spin-flip frequency shift reduced by factor 3 for ³He²⁺ compared to proton

A. Mooser *et al.*, Phys. Rev. Lett. **110**, 140405 (2013).


- Magnetic bottle also couples the radial motion to the axial frequency
- Noise on electrodes of some pV/Hz^{1/2}

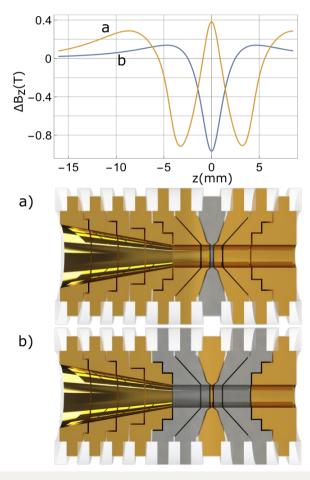
→ random cyclotron quantum transitions

 Transition rate dn₊/dt~n₊ : energy dependent cyclotron noise

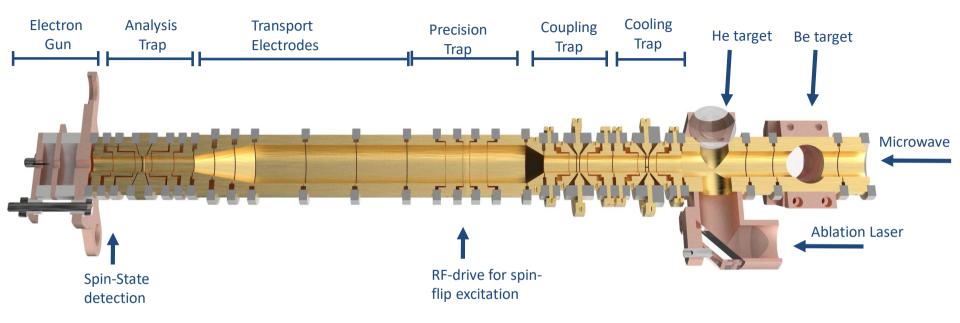


- Magnetic bottle also couples the radial motion to the axial frequency
- Noise on electrodes of some pV/Hz^{1/2}
 - → random cyclotron quantum transitions
- Transition rate dn₊/dt~n₊ : energy dependent cyclotron noise

- Magnetic bottle also couples the radial motion to the axial frequency
- Noise on electrodes of some pV/Hz^{1/2}
 - → random cyclotron quantum transitions
- Transition rate dn₊/dt~n₊ : energy dependent cyclotron noise

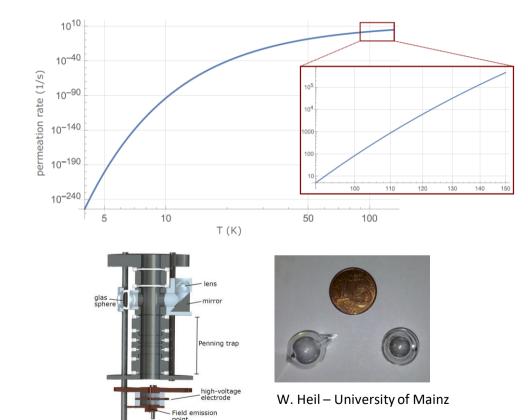

New Analysis Trap

- Small trap radius (1.25mm):
 - Inhomogeneity doubled compared to
 1.8mm radius 600 T/mm²
 - However also larger axial frequency
 - $\rightarrow \Delta v_{z,SF} \sim \frac{\mu_k B_2}{m v_z} \sim 90$ mHz compared to 60mHz
 - Increases cyclotron noise by factor 1.7


New Analysis Trap

- Small trap radius (1.25mm):
 - Inhomogeneity doubled compared to 1.8mm radius 600 T/mm²
 - However also larger axial frequency
 - $\rightarrow \Delta v_{z,SF} \sim \frac{\mu_k B_2}{m v_z} \sim 90$ mHz compared to 60mHz
 - Increases cyclotron noise by factor 1.7
- Ferromagnetic correction electrodes:
 - Larger energy spacing between cyclotron quantum states
 - Reduces rate for random cyclotron
 quantum transitions

Trap Setup



Test of internal ³He source

- Avoid external inlet for improved vacuum
- Possibile sources:
- 1. Tritium in TiH₂ after decay to ³He
- 2. ³He rich meteorites
- 3. ³He filled glas sphere:

Strongly temperature dependent helium permeation through glass

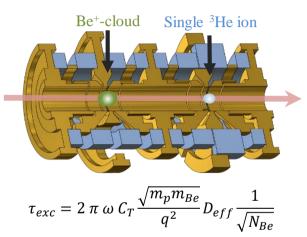
• Penning trap setup dedicated to He source test

Summary

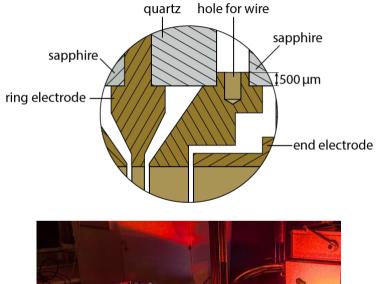
Nuclear magnetic moment of ³He²⁺

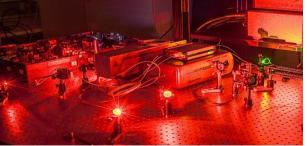
- Hyperpolarized ³He as independent and uncorrelated B-field probe
- Uncorrelated measurement to test water probe: different and in cases smaller systematic effects
- Design of new experiment
- Due to reduced sensitivity on spin-state new analysis trap and sympathetic laser cooling

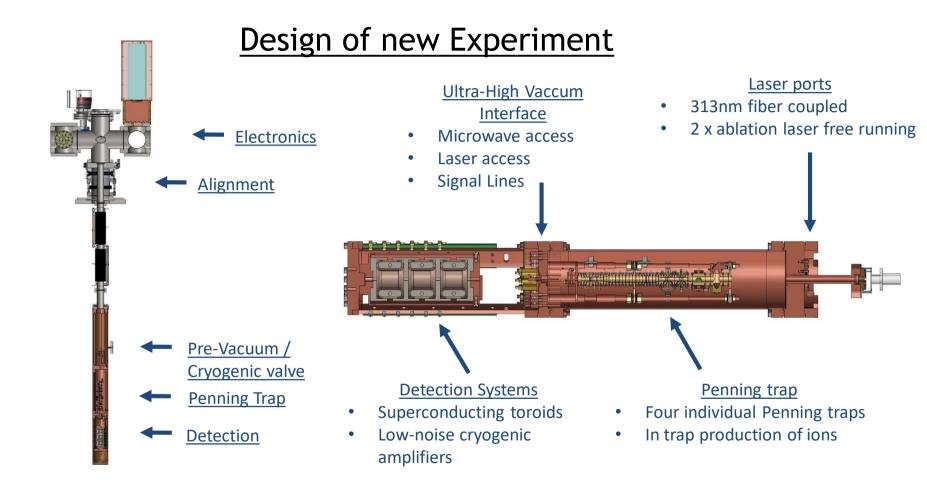
Ground-state HFS of ³He⁺


- Novel nuclear spin-state detection scheme
- Complementary determination of e.g nuclear structure effect

Sympathetic Laser Cooling


Plan to implement *common end cap* technique ٠




- <u>To optimize:</u> N_{Be} Increase number of Be ions
 - D_{eff} Reduce trap dimensions
 - *C_T* Reduce trap capacitance
 - Reduce oscillation frequency ω

Coupling times τ_{exc} of order 10sec

M. Bohmann et al., J. Mod. Opt. 65, 601 (2018)

