

$G^{\epsilon\epsilon}$ Lab's Equivalence Principle Experiment

Kasey Wagoner: kwagoner@princeton.edu

R. Cowsik, D. Huth, M. Jeyakumar, M Abercrombie,

A. Archibald, T. Madziwa-Nussinov, N. Krishnan

Equivalence Principles

Weak Equivalence Principle all bodies fall equally in a gravitational field

Einstein's Equivalence Principle all *non-gravitational* laws of physics should take on their SR form in a FF reference frame

Strong Equivalence Principle
all laws of physics should take on their SR form in a FF
reference frame

Exciting time for EP Tests

Torsion Balances

Atomic Interferometers

Antimatter

Lunar Laser Ranging

Satellites

Astrophysics

Why do we care?

Pillar of General Relativity

Unification?

GR is Foundation of Λ CDM

Dark Energy = ???

 H_0 measurement tension

Characterizing EP Violation

New fields have potential energy characterized as

$$V(r) = \frac{Gm_1m_2}{r} \left(1 + \alpha_{12}e^{-r/\lambda}\right)$$

EP tests quantified through Eötvös parameter

$$\eta_{1,2} = 2 \frac{a_1 - a_2}{a_1 + a_2} = 2 \frac{\left(m_g/m_i\right)_1 - \left(m_g/m_i\right)_2}{\left(m_g/m_i\right)_1 + \left(m_g/m_i\right)_2}$$

$$\eta_{(t)}$$

 $G^{\epsilon\epsilon}$ Lab [goal]

Eötvös [1919]
$$\eta < 4 \times 10^{-9}$$

Princeton [1964]
$$\eta = [1.3 \pm$$

on [1964]
$$\eta = [1.3 \pm 1.0] \times 10^{-11}$$

Eöt-Wash [2012]
$$\eta = [-0.7 \pm 1.3] \times 10^{-13}$$

$$\sin \left[2012 \right] \qquad \qquad \eta = \left[-0.7 \pm 1.7 \right]$$

Wuhan [2018]
$$\eta = [-1.2 \pm 2.8_{\text{stat}} \pm 3.0_{\text{syst}}] \times 10^{-13}$$

$$ext{COPE}_{[2017]} \quad \eta =$$

MicroSCOPE [2017]
$$\eta = [-1 \pm 9_{\text{stat}} \pm 9_{\text{syst}}] \times 10^{-15}$$

$$\eta \sim 5 \times 10^{-14}$$

Kasey Wagoner

6/20

$G^{\epsilon\epsilon}$ Lab

$G^{\epsilon\epsilon}$ Lab's Instrument

Dicke-Braginsky torsion balance

Angular orientation monitored by autocollimating optical lever

Passively isolated from environment

Kasey Wagoner 8/20

The signal

$$\tau(t) = \left[\left(\frac{m_g}{m_i} \right)_1 - \left(\frac{m_g}{m_i} \right)_2 \right] \frac{GM_S}{R^2} r \cos \theta_{(t)} \cos \varphi_{(t)}$$

Our Home

Our Home

Our Home

Tyson Research Center

protected area outside St. Louis, MO, USA

low auto and foot traffic

Ammunition bunker thick concrete walls partially buried in hillside

Remotely operated

Temperature Variations

Kasey Wagoner 11/20

Daily Temperature Variations

Kasey Wagoner 12/20

Long-Period Torsion Balance

Al and SiO₂ masses create a compositional dipole with four-fold azimuthal symmetry

75% of total mass couples to EP-violating forces

SiO₂ masses are mirrored for observation

Long-Period Torsion Balance

4-fold mass symmetry, each $m = \overline{14.33 \text{ g}}$

$$I = 3.75 \times 10^{-3} \text{ kg m}^2$$

Suspended from $\emptyset = 18 \,\mu\mathrm{m}$ tungsten fiber

Long period, $T \approx 3.5 \text{ hrs}$

Long-Period Torsion Balance

Magnetic Induction Control System

Two sets of Helmholtz coils 90° out of phase

 \vec{B} field induces magnetic dipole, $\vec{\mu}_{ind}$ Torque aligns $\vec{\mu}_{ind}$ with \vec{B} Rotating \vec{B} rotates torque

Remote control of electronics allows control of balance

Kasey Wagoner 14/20

Magnetic Induction Control System

Two sets of Helmholtz coils 90° out of phase

 \vec{B} field induces magnetic dipole, $\vec{\mu}_{ind}$ Torque aligns $\vec{\mu}_{ind}$ with \vec{B} Rotating \vec{B} rotates torque

Remote control of electronics allows control of balance

Kasey Wagoner 14/20

Magnetic Induction Control System

Two sets of Helmholtz coils 90° out of phase

 \vec{B} field induces magnetic dipole, $\vec{\mu}_{ind}$ Torque aligns $\vec{\mu}_{ind}$ with \vec{B} Rotating \vec{B} rotates torque

Remote control of electronics allows control of balance

Kasey Wagoner 14/20

Fiber Connections

Rotary Feedthrough

allows for active damping on site or remotely through a computer controlled picomotor

Pendular Damper

passive damping of pendular motion through the dissipation of eddy currents

Kasey Wagoner

Autcollimating Optical Lever

Optical Lever Response

Kasey Wagoner 17/20

The Data

Fully integrated, remote controlled instrument

115 days of uninterrupted data

Start: 00:00:00, 19/01/2018

End: 06:58:19, 14/05/2018

The Data

Kasey Wagoner 18/20

The Data

Kasey Wagoner 18/20

Lessons Learned for Future

Improve pendular damper

Improve thermal isolation

Improve magnetic shielding

Improve environmental monitoring

Improve robustness of induction control system

Summary

Eötvös's legacy lives on in this exciting time torsion balances still have a lot to say!

Long-period torsion balances are promising instruments

 $G^{\epsilon\epsilon}$ Lab's experiment is off and running.

Backup

Seismic Background

Kasey Wagoner backup

Autcollimating Optical Lever

Dynamic range $> 5 \times 10^{-3}$ rad

Resolution $\approx 3 \times 10^{-10} \text{ rad/Hz}^{-1/2}$ above 0.1 Hz