Muon g-2 and EDM

FFK June 11, 2019 Tsutomu Mibe (IPNS, KEK)

Anomalous magnetic moment

• The Lande's g factor is 2 in tree level (Dirac equation)

• In quantum field theory, *g* factor gets corrections:

Anomalous magnetic moment

 $a_{\mu} = a_{\mu}(QED) + a_{\mu}(had) + a_{\mu}(weak) + a_{\mu}(BSM)$

All interactions, *including those ones we don't know*, appear in quantum loops, and add up to contribute to a_{μ}

Theory collaboration "Muon g-2 theory initiative" meets at Mainz, June 18-22, 2018

Next meeting : INT, University of Washington, Seattle) 9-13 September 2019.

Comparison between SM and a_{μ}

A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 97, 114025 (2018)

Three steps of g-2 measurement

1. Prepare a polarized muon beam.

2. Store in a magnetic field (muon's spin precesses)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

3. Measure decay positron

Extraction of a_{μ}

muon spin precession

$$\omega_a = \frac{e}{m_\mu} a_\mu B$$

 proton spin precession (proton NMR)

$$\omega_p = \mu_p B$$

muon magnetic moment

$$\mu_{\mu} = g \frac{e}{2m_{\mu}} = (1 + a_{\mu}) \frac{e}{m_{\mu}}$$

g-2 experiment at Fermilab

arXiv:1501.06858

- BNL result statistic limited.
 - 540 ppb (stat)
 - 330 ppb (syst)
- Fermilab goal
 - A factor of 21 more statistics
 - 2x10¹¹ e⁺ detected
- Advantages
 - Long π decay channel
 - Reduced π in the ring
 - 4 times higher fill frequency
 - keeping muons per fill about the same

Courtesy of D. Kawall

21 times more detected e⁺

Fermilab E989 experiment

B= 1.45 T

Gel

Photo courtesy of Fermilab E989

Stored muon beam

UNIVERSITY

- Finished first physics run, Run 1, in July 2018. Analysis in progress
 - 2x BNL stats collected (2x10¹⁰ e+), **1.4x BNL stats after cuts (\Delta \omega_a / \omega_a = 350 \text{ ppb})**
 - Field uniformity 2x better than BNL ($\Delta B/B^2 210 \text{ ppb RMS}$)
- Half way through the **Run 2** with improvements

Spin precession data in Run 1

- Two-fold blindings
 - Clock offset
 - Random offset
- Relative unblinding test successful
- First result from Run 1 will be released soon.

Conventional muon beam

Muon beam at J-PARC

- Low emittance muon beam (1/100 of BNL)
- No strong focusing (1/1000) & good injection eff. (x10)
- Compact storage ring (1/20)
- Tracking detector with large acceptance
- **Completely different from BNL/FNAL method**

Production of thermal energy muonium

Silica aerogel (SiO₂, 30 mg/cc)

surface

muon beam

Laser-ablated holes

Muonium (µ⁺e⁻)

> Efficiency (measured) $3 \times 10^{-3}/\mu$ (laser region 5mm x 50mm)

Data taken at TRIUMF

8 mm P. Bakule et al., PTEP 103C0 (2013) G. Beer et al., PTEP 091C01 (2014)

Muon LINAC

Phase space distributions after muon LINAC (simulation)

RF acceleration of Mu⁻ for the first time!

RF acceleration of Mu⁻ for the first time!

Muon storage magnet and detector

21

Average magnetic field

Comparison of experiments

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

	BNL-E821	Fermilab-E989	Our experiment	
Muon momentum	3.09 GeV/c		300 MeV/c	
Lorentz γ	29.3		3	
Polarization	100%		50%	
Storage field	B = 1.45 T		B = 3.0 T	
Focusing field	Electric quadrupole		Very weak magnetic	
Cyclotron period	149 ns		7.4 ns	
Spin precession period	$4.37 \ \mu s$		$2.11 \ \mu s$	
Number of detected e^+	5.0×10^{9}	1.6×10^{11}	5.7×10^{11}	
Number of detected e^-	3.6×10^{9}	_	_	
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb	
(syst.)	280 ppb	100 ppb	<70 ppb	
EDM precision (stat.)	$0.2 \times 10^{-19} e \cdot \mathrm{cm}$	_	$1.5 \times 10^{-21} e \cdot \mathrm{cm}$	
(syst.)	$0.9 \times 10^{-19} e \cdot \mathrm{cm}$	—	$0.36 \times 10^{-21} e \cdot \mathrm{cm}$	
	Completed	Running	In preparation	

Full approval by the lab (March, 2019)

Cross calibration of B-field probes

Fermilab Probe

g-2

g-2/EDM MuSEUM

J-PARC

Probe

ANL, March 27 2018

Cross calibration between J-PARC and US NMR probes at ANL (Jan 14- 2019)

H. Yamaguchi et al., IEEE Trans. on Appl. Sup., 29 9000904 (2019)

Muon g-2 and muonium spectroscopy

Muon g-2 and muonium spectroscopy

International School on muon g-2 and hadronic effects August 23 - 28, 2020 Erbracher hof, Mainz, Germany

Previous school: Sep 17-21, 2018 @BINP https://indico.inp.nsk.su/event/14/

Summary

- Muon g-2/EDM offers rich physics cases to study beyond the standard model in quantum loops.
- BNL muon g-2 results
 - More than 3σ deviation from the SM.
- Fermilab muon g-2 experiment is taking physics run.
- J-PARC muon g-2/EDM experiment is in preparation with completely different method.
- Many new results will come in next 5 years.

muon g-2 and EDM measurements

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

general form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
BNL E821 approach
 $\gamma = 30 \ (P = 3 \ \text{GeV/c})$
J-PARC approach
 $E = 0 \ \text{at any } \gamma$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B}\right) \right]$$
FNAL E989
J-PARC E34

Momentum

BNL/Fermilab systematic uncertainties ω_a

Category	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	30
Total	180	Quadrature sum	70

BNL/Fermilab systematic uncertainties ω_p

Source of uncertainty	1999	2000	2001 H	E989
Systematics of calibration probes	50	50	50	35
Calibration of trolley probes	200	150	90 🗪	30
Trolley measurements of B_0	100	100	50	30
Interpolation with fixed probes	150	100	70 🗕	30
Uncertainty from muon distribution	120	30	30	10
Inflector fringe field uncertainty	200	_	-	_
Time dependent external B fields	_	-		5
Others †	150	100	100	30
Total systematic error on ω_p	400	240	170 📥	70
Muon-averaged field [Hz]: $\omega_p/2\pi$	$61\ 791\ 256$	61791595	$61\ 791\ 400$	_

J-PARC g-2/EDM : expected uncertainties

 Table 5. Summary of statistics and uncertainties.

	Estimation
Total number of muons in the storage magnet	5.2×10^{12}
Total number of reconstructed e^+ in the energy window [200, 275 MeV]	5.7×10^{11}
Effective analyzing power	0.42
Statistical uncertainty on ω_a [ppb]	450
Uncertainties on a_{μ} [ppb]	450 (stat.)
	< 70 (syst.)
Uncertainties on EDM [$10^{-21} e \cdot cm$]	1.5 (stat.)
	0.36 (syst.)

Table 6. Estimated systmatic uncertainties on a_{μ} .

Anomalous spin precession (ω_a)		Magnetic field (ω_p)		
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

J-PARC g-2/EDM Breakdown of efficiencies

Subsystem	Efficiency	Subsystem	Efficiency
H-line acceptance and trans-	0.16	DAW decay	0.96
mission			
Mu emission	0.0034	DLS transmission	1.00
Laser ionization	0.73	DLS decay	0.99
Metal mesh	0.78	Injection transmission	0.85
Initial acceleration transmis-	0.72	Injection decay	0.99
sion and decay			
RFQ transmission	0.95	Kicker decay	0.93
RFQ decay	0.81	e^+ energy window	0.12
IH transmission	0.99	Detector acceptance of e^+	1.00
IH decay	0.99	Reconstruction efficiency	0.90
DAW transmission	1.00		

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)