Precision Measurements in the Higgs Sector at ATLAS and CMS

Preliminary

André Sopczak IEAP CTU in Prague on behalf of the ATLAS and CMS Collaborations

International Conference on Precision Physics and Fundamental Physical Constants (FFK-2019)

> Tihany, Hungary 9-14 June 2019

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome#Recent_Results http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG/index.html

Outline

- Higgs boson mass and widthHiggs boson couplings to bosons
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow ZZ$
 - $H \rightarrow WW$
- □ Higgs boson couplings to fermions
 - $H \rightarrow \tau \tau$
 - $H \rightarrow bb$
 - $H \rightarrow tt$
 - $H \rightarrow \mu\mu$
- Differential Higgs boson decay cross-sections
- Rare Higgs boson decays
- □ Higgs boson decays to invisible particles
- □ Higgs boson production modes (ggF, VBF, VH, ttH)
- □ Single top-Higgs production tH, Higgs boson pair-production HH
- □ Relation of coupling and fermion mass
- Outlook

Higgs boson mass

ATLAS, PLB 784 (2018) 345

- \Box m_H = 124.97 ± 0.24 GeV
- □ Combination $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$ decay channels
- **\square** H $\rightarrow \gamma \gamma$: syst. uncertainties dominant
- □ H→ZZ→4I: stat. and sys. uncertainties comparable at 140 fb⁻¹

± 0.20 (stat)

± 0.08 (syst)

□ 4-lepton mass with kinematic

Higgs boson width

Detector resolution much larger than expected SM width (4.07 MeV, PDG)

Produced numbers of Higgs bosons in four production modes

Higgs boson decay branching fraction and expected final states

Institute of Experimental and Applied Physics Czech Technical University in Prague

Prague and Applied Physics University in Institute of Experimental **Czech Technical**

Higgs boson couplings to bosons $H \rightarrow ZZ$ H→ZZ→4I ATLAS-CONF-2018-018 (79.8 fb⁻¹) CMS-PAS-HIG-19-001 (137.1 fb⁻¹) Clear signal over background CMS Preliminary 2016 + 2017 + 2018 137.1 fb⁻¹ (13 TeV) 240 🖻 >Events / 2GeV 102 / 2GeV 113 Data H(125) qq→ZZ, Zγ* 200 gg→ZZ, Zγ* Z+X GeV -----ATLAS Preliminary Data Events / 2.5 G 00 00 00 Signal (m_=125 GeV) 140 $H \rightarrow ZZ^* \rightarrow 4I$ ZZ* 13 TeV, 79.8 fb⁻¹ Z+jets, tī, tī+V, VVV 120 ///// Uncertainty 100 80 60 60 F 40 40 20 20 0 80 100 120 140 160 m₄₁ (GeV) 80 90 100 110 120 130 140 150 160 170 m₄₁ [GeV]

Institute of Experimental and Applied Physics Czech Technical University in Prague

A.Sopczak, June 2019

8

Higgs boson couplings to bosons $H \rightarrow ZZ$ \square H \rightarrow ZZ \rightarrow 4I, ATLAS-CONF-2018-018, CMS-PAS-HIG-19-001 ggF: $\sigma \times B$ uncertainty 15%, other production modes probing rate consistent with SM expectation with 11% uncertainty CMS Preliminary 137.1 fb⁻¹(13 TeV H→ZZ→4I ATLAS Preliminary ggH,bbH Expected SM m_H profiled 0.97^{+0.09}_{-0.09}(stat.) ^{+0.09}_{-0.07}(syst.) $H \rightarrow ZZ^*$ Observed: Stat + Sys =0.94 +0.11 13 TeV, 79.8 fb⁻¹ $\mu_{inclusive}$ -0.10 SM Prediction Stage 0 - |y_| < 2.5 $\sigma \cdot B$ [fb] $(\sigma \cdot B)_{SM}$ [fb] VBF ggF 1220 ± 185 1170 ± 80 0.64^{+0.45}(stat.) ^{+0.16}(syst.) VBF 250 ± 85 91.7 ± 2.8 VH 52.4+2.6 VH 50 ± 50 1.15^{+0.89}_{-0.72}(stat.) ^{+0.26}_{-0.16}(syst.) < 70 $15.4^{+1.1}_{-1.6}$ ttH (95% CL) ttH.tH Inclusive 1570 ± 175 1330 ± 90 0.13^{+0.92}(stat.) ^{+0.11}(syst.) 2 0 3 5 6 7 8 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 $\sigma \cdot B / (\sigma \cdot B)_{SM}$ μ

Institute of Experimental and Applied Physics Czech Technical University in Prague

A.Sopczak , June 2019

9

Higgs boson couplings to bosons $H \rightarrow WW$

PLB 789 (2019) 508

🖵 ggFσxB

- Measurement: $11.4^{+1.2}_{-1.1}$ (stat) $^{+1.2}_{-1.1}$ (theo syst) $^{+1.4}_{-1.3}$ (exp syst) pb
- SM: 10.4 ± 0.6 pb
- URF σ x B
 - Measurement: $0.5^{+0.24}_{-0.22}$ (stat) ± 0.10 (theo syst) $^{+0.12}_{-0.13}$ (exp syst) pb

Higgs boson couplings to fermions ⁽ H $\rightarrow \tau \tau$

- ATLAS+CMS data combined (LHC Run-1): observation with 5.5 (5.0) st.dev., JHEP 08 (2016) 045
- ATLAS Run-1 and 36 fb⁻¹ Run-2 data:
 6.4 (5.4) standard deviations, PRD 99 (2019) 072001
 - ggF: Measurement: 3.1 ± 0.1 (stat) ^{+0.16}_{-0.13} (syst) pb SM: 3.05 ± 0.13 pb
 - VBF: Measurement: 0.28 ± 0.09 (stat) ^{+0.11}_{-0.09} (syst) pb SM: 0.237 ± 0.006 pb

A.Sopczak, June 2019

Higgs boson couplings to fermions $H \rightarrow bb$

Higgs boson couplings to fermions $^{(i)}$ H \rightarrow bb

Institute of Experimental and Applied Physics Czech Technical University in Prague

Higgs boson couplings to fermions \bigcirc H \rightarrow tt via ttH direct probe, photons

Top candidate mass [GeV]

15

Higgs boson couplings to fermions \bigcirc H \rightarrow tt via ttH direct probe, photons

Institute of Experimental and Applied Physics Czech Technical University in Prague

ttH: two same-sign leptons and one hadronic tau final state

Main backgrounds: tt and ttV
 Fake background estimate determined from data

ttH candidate (multi-leptons) same-sign e and μ and tau-jet

ATLAS e Run: 305723 Event: 1261546391 2016-08-06 17:51:01 CEST

PRD 97 (2018) 072003

Higgs boson couplings to fermions $\$ H \rightarrow tt via ttH direct probe, leptons

□ ttH: multilepton channels with I = e or μ , τ (hadronic decay), CMS-PAS-HIG-18-018 □ $\mu = 0.96^{+0.34}_{-0.31}$ ($1.00^{+0.30}_{-0.27}$) for 35.9 fb⁻¹ (2016) and 41.5 fb⁻¹ (2017) data □ 3.2 (4.0) st.dev.

Higgs boson couplings to fermions $H \rightarrow tt$ via ttH direct probe

CMS-PAS-HIG-18-030

□ ttH(H→bb)
 □ fully hadronic, single-lepton, double-lepton final states
 □ 3.7 (2.6) st.dev.

CMS Preliminary 35.9 fb⁻¹ (2016) + 41.5 fb⁻¹ (2017) (13 TeV) 41.5 fb⁻¹ (13 TeV) Events / Bin _____ **CMS** Preliminary DL (\geq 4 jets, \geq 4 b tags) Data signal stat syst μ tot Post-fit 10^{4} tt+lf Single t V+jets tī+c⊂ +1.02 +0.54 +0.86-0.38 Fully-hadronic -1.06 ∎tī+V -0.54 -0.91 tī+b 10^{3} tī+2b Uncertainty tī+bb +0.41 +0.19 +0.36 1.22 Single-lepton -0.37 -0.18-0.32 10² +0.74 +0.39 +0.631.04 Dilepton -0.71 -0.38 -0.59 10 +0.43 +0.22 +0.37 0.85 2016 -0.41 -0.22 -0.35 1 +0.44 +0.21 +0.39 1.49 2017 -0.40 -0.20 -0.35 Data / Pred. 1.4 1.2 +0.32 +0.15 +0.28 1.15 Combined -0.29 -0.15 -0.25 0.8 0.6 0 5 10 -0.64 $\hat{\mu} = \hat{\sigma} / \sigma_{SM}$ **BDT** discriminant A.Sopczak, June 2019 20

Prague **Applied Physics** 2 University and echnical Institute of Experimenta zech

21

Simplified template cross-sections STXS

□ Proposed at Les Houches'15 (Proceedings) & LHC Higgs cross-section working group

Common to ATLAS, CMS, and theory. Goals:

- Measure cross-sections per production modes (ggF, VBF, VH, ttH) in different phase space, signal templates: Pt(H), Pt(V)... reducing model dependency and maximizing sensitivity to BSM effects
- Combine different decay channels to increase sensitivity
- Combination of main channels: STXS stage-1, ATLAS-CONF-2019-005
- STXS: several channels contribute to different kinematic regions of same production mode, e.g., VH dominated by H→bb in high Pt(V), while gg and ZZ* relevant at low Pt(V)
- No significant deviations from SM prediction in any kinematic region: p-value wrt SM hypothesis 80%

Parameter normalized to SM value

Simplified template cross-sections STXS Experimental selection can be different and use advanced techniques (MVAs) Aims to balance experimental precision and theory uncertainties

- □ Combination of various decay channels with 35.9 fb⁻¹, arXiv:1809.10733
- □ STXS stage 1: ggH and VBF bins using $H \rightarrow \gamma \gamma$ based on 77.4 fb⁻¹, CMS-PAS-HIG-18-029

Differential Higgs boson decay cross-sections, Pt(H)

Institute of Experimental and Applied Physics Czech Technical University in Prague

Ζγ

JHEP 10 (2017) 112

25

Rare Higgs boson decays

Further SM Higgs boson decay modes can e be in reach with growing LHC data sets. Current limits at 95% CL: Date: 2016-08-26 16:54:08 UT □ H→Zγ: < 6.6 (4.4) x SM \Box H \rightarrow cc: < ZH(cc): 110 x SM</p> <J/ψγ: 120 x SM Events / 10 GeV Data ATLAS 10⁵ Pre-fit CC √s = 13 TeV. 36.1 fb⁻¹ 14 □ Fit Result Events / GeV ATLAS -- Data 1 *c*-tag, *p*^Z₊ ≥ 150 GeV Z + iets tt 12 - √s=13 TeV, 36.1 fb⁻¹ - Background fit ١ZZ 10⁴ VBF-enriched Signal × 20 ZW PRL 120 (2018) 211802 10 ZH(bb) m_µ = 125 GeV ZH(cc) (100×SM) 10^{3} 8⊢ 6 10² 10 Data - Fit Data/Bkgd. 1. 0.9 180 200 100 140 160 60 80 120 115 125 130 135 140 145 150 120 m_{cē} [GeV] m_{zγ} [GeV] A.Sopczak, June 2019

Rare Higgs boson decays

Higgs boson decays to invisible particles

Motivation: Patt, Wilczek, "Higgs-field Portal into Hidden Sectors", arXiv:0605188

- □ Indirect: constraints from coupling fits
- □ Direct: searches for Higgs to decays to invisible particles
- □ Three separate ATLAS searches: V(had)H(inv), Z(lep)H(inv), VBF H(inv)
- □ $B(H \rightarrow inv) < 0.26$ (0.17) at 95% CL, assuming SM production cross-section

Higgs boson decays to invisible particles

Dominant backgrounds: $Z(\upsilon \upsilon)$ +jets and $W(\ell \upsilon)$ +jets, extrapolated from 2-lepton sideband, and from 1-lepton sideband, respectively. 35.9 fb⁻¹ (13 TeV) VBF production channel most sensitive GeV 10⁴ CMS Z(vv)+jets (QCD) Data 2016 VBF-only: B(H→inv) < 0.33 (0.25)</p> Events / Pred. from W(lv)+jets (QCD) Z(vv)+jets (EW) 10³ O(25%) improvement in sensitivity b-only fit W(Iv)+jets (EW) Top guark by adding VH and ggH channels 10² Dibosons Other bkgs. B(H→inv) < 0.26 (0.20) at 95% CL (13 TeV data)</p> 10 ••••• VBF H(125)→inv. ggH(125)→inv. $B(H \rightarrow inv) < 0.19 (0.15) using 7,8,13 TeV data$ 35.9 fb⁻¹ (13 TeV) 10⁻¹ ß 95% CL upper limit on σ x B(H → inv)/σ 1.4⊢ CMS 10⁻² arXiv:1809.05937 Observed .2 -O-- Median expected 10⁻³ Data-Pred.) Data / Pred. 68% expected Uncertainty 95% expected 0.8 ü 0.6 0.5 2.5 3 4.5 0.4 1.5 2 3.5 m_{ii} [TeV] □ ttH limit to invisible decays at 95% CL 0.2 \Box B(H \rightarrow inv) < 0.46 (0.48), CMS-PAS-HIG-18-008 ggH-tag VBF-tag Z(II)H-tag V(qq')H-taq Combined A.Sopczak, June 2019

29

ATLAS combination (24.5 to 79.8 fb⁻¹)

Institute of Experimental and Applied Physics Czech Technical University in Prague

	$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ^*$	$H \to WW^*$	$H \to \tau \tau$	$H \rightarrow b\bar{b}$
	$t\bar{t}H$ leptonic (3 categories)	$t\bar{t}H$ multilepton 1 ℓ + 2 τ_{had}	$t\bar{t}H \ 1 \ \ell$, boosted		
	$t\bar{t}H$ hadronic (4 categories)	$t\bar{t}H$ multilepton 2 opposite-sig	$t\bar{t}H \ 1 \ \ell$, resolved (11 categories)		
		$t\bar{t}H$ multilepton 2 same-sign ℓ	$t\bar{t}H \ 2 \ \ell \ (7 \text{ categories})$		
$t\bar{t}H$		$t\bar{t}H$ multilepton 3 ℓ (categorie			
		$t\bar{t}H$ multilepton 4 ℓ (except H			
		$t\bar{t}H$ leptonic, $H \rightarrow ZZ^* \rightarrow 4\ell$			
		$t\bar{t}H$ hadronic, $H \rightarrow ZZ^* \rightarrow 4\ell$			
	VH 2 l	VH leptonic			$2 \ \ell, \ 75 \le p_{\rm T}^V < 150 \ GeV, \ N_{\rm jets} = 2$
 VH	$VH \ 1 \ \ell, \ p_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}} \ge 150 \ \mathrm{GeV}$				$2 \ \ell, \ 75 \le p_{\rm T}^V < 150 \ GeV, \ N_{\rm jets} \ge 3$
	$VH \ 1 \ \ell, \ p_{\rm T}^{\ell+E_{\rm T}^{\rm mass}} < 150 \ {\rm GeV}$				$2 \ \ell, \ p_{\rm T}^V \ge 150 \ GeV, \ N_{\rm iets} = 2$
	$VH E_{T}^{\text{miss}}, E_{T}^{\text{miss}} > 150 \text{ GeV}$	0-jet, $p_{\rm T}^{4\ell} > 100 \ GeV$			$2 \ \ell, \ p_{\rm T}^{V} > 150 \ GeV, \ N_{\rm inter} > 3$
	$VH E_{\rm m}^{\rm miss} E_{\rm m}^{\rm miss} < 150 {\rm GeV}$				$1 \ell p_{\mathrm{T}}^{V} > 150 \ GeV \ N_{\mathrm{T}} = 2$
	$VH + VBE n^{j1} > 200 \text{ CeV}$				$1 \ell p_1 \geq 150 \text{ GeV}, N_{\text{jets}} \geq 1 \ell p_1 \geq 150 \text{ GeV}$
	$V H + V D P p_T \ge 200 \text{ GeV}$	Distance 100 CeV			$1 \ell p_{\Gamma} \ge 150 \text{ GeV}, N_{\text{jets}} = 5$
	V H hadronic (2 categories)	2-jet, $m_{jj} < 120 \text{ GeV}$			$0 \ell, p_{\rm T} \ge 150 \text{ GeV}, N_{\rm jets} = 2$
	avaria i				$0 \ \ell, \ p_{\rm T} \ge 150 \ GeV, \ N_{\rm jets} = 3$
	VBF, $p_{\rm T}^{\gamma\gamma JJ} \ge 25 \text{ GeV} (2 \text{ categories})$	2-jet VBF, $p_{T_1}^{j_1} \ge 200 \ GeV$	2-jet VBF	VBF $p'_{\rm T}$ > 140 GeV	VBF, two central jets
VBF	VBF, $p_{\rm T}^{\gamma\gamma\jmath\jmath} < 25 \text{ GeV} (2 \text{ categories})$	2-jet VBF, $p_{\rm T}^{j_1} < 200 \text{ GeV}$		$(\tau_{\rm had} \tau_{\rm had} \text{ only})$	VBF, four central jets
				VBF high- m_{jj}	VBF $+\gamma$
				VBF low- m_{jj}	
	2-jet, $p_{\rm T}^{\gamma\gamma} \ge 200 \text{ GeV}$	1-jet, $p_{\rm T}^{4\ell} \ge 120 \ GeV$	1-jet, $m_{\ell\ell} < 30 \ GeV, \ p_{\rm T}^{\ell_2} < 20 \ GeV$	Boosted, $p_{\rm T}^{\tau\tau} > 140 \ GeV$	
ggF	2-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j200 GeV	1-jet, 60 GeV $\leq p_{\rm T}^{4\ell}$;120 GeV	1-jet, $m_{\ell\ell} < 30 \ GeV, \ p_{\rm T}^{\ell_2} \ge 20 \ GeV$	Boosted, $p_{\rm T}^{\tau\tau} \leq 140 \ GeV$	
	2-jet, 60 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j120 GeV	1-jet, $p_{\rm T}^{4\ell} < 60 \; GeV$	1-jet, $m_{\ell\ell} \geq 30 \ GeV, \ p_{\rm T}^{\ell_2} < 20 \ GeV$		
	2-jet, $p_{\rm T}^{\gamma\gamma} < 60~{\rm GeV}$	0-jet, $p_{\mathrm{T}}^{\bar{4}\ell} < 100~GeV$	1-jet, $m_{\ell\ell} \geq 30 \ GeV, \ p_{\rm T}^{\ell_2} \geq 20 \ GeV$		
	1-jet, $p_{\rm T}^{\gamma\gamma} \ge 200 { m ~GeV}$		0-jet, $m_{\ell\ell} < 30~GeV, ~p_T^{\ell_2} < 20~GeV$		
	1-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma}$;200 GeV		0-jet, $m_{\ell\ell} < 30 \ GeV, \ p_{\rm T}^{\ell_2} \ge 20 \ GeV$		
	1-jet, 60 GeV $\leq p_{\rm T}^{\gamma\gamma}$;120 GeV		0-jet, $m_{\ell\ell} \ge 30~GeV, ~p_{\rm T}^{\ell_2} < 20~GeV$		
	1-jet, $p_{\rm T}^{\gamma\gamma} < 60 {\rm ~GeV}$ 0-jet (2 categories)		0-jet, $m_{\ell\ell} \ge 30~GeV, ~p_{\rm T}^{\ell_2} \ge 20~GeV$		

 $\mu = 1.11^{+0.09}_{-0.08} = 1.11 \pm 0.05 \text{ (stat.)}^{+0.05}_{-0.04} \text{ (exp.)}^{+0.05}_{-0.04} \text{ (sig. th.)}^{+0.03}_{-0.03} \text{ (bkg. th.)}$

ATLAS-CONF-2019-005

A.Sopczak , June 2019

Higgs boson production modes ggF, VBF, VH and ttH established

Institute of Experimental and Applied Physics

Czech Technical University in Prague

Higgs boson production modes

Higgs boson production

- □ 137 fb⁻¹, CMS-PAS-HIG-19-001
- $\Box H \rightarrow ZZ \rightarrow 4\ell \text{ channel } (\ell = e \text{ or } \mu)$
- Measurement: $\sigma = 2.73^{+0.23}_{-0.22}$ (stat) $^{+0.24}_{-0.19}$ (syst) fb
- □ SM: 2.76 ± 0.14 fb
- Differential cross-sections versus Pt(H), H rapidity and number of jets

Single top and Higgs boson production tH

W

W

 $g_{\rm HVV}$

q

u tH, H \rightarrow WW/ZZ/ $\tau\tau$ and H \rightarrow bb

- **D** Combination with ttH, H $\rightarrow \gamma \gamma$
- Sensitive to the absolute values if the top quark Yukawa coupling, the Higgs boson coupling to vector bosons, gHVV, and, uniquely, to their relative sign
- SM-like signal favours a $\kappa t = 1.0$ over $\kappa t = -1.0$ by > 1.5 st.dev.

Relation of coupling and fermion mass

Interpretation of results in the κ framework as a function of the particle mass, assuming no BSM contributions to the total width

Conclusions – Highlights of Higgs physics

- Institute of Experimental and Applied Physics Czech Technical University in Prague
- □ Very successful LHC Run-2 operation
- Observation of the coupling Higgs to tau leptons
- Observation of the coupling Higgs to bottom quarks
- Observation of the coupling Higgs to top quarks
- □ Approaching sensitivity to the coupling **Higgs to muon leptons**
- Most inclusive measurements established, focus on differential measurements
- Combination with observations of all main LHC Higgs production modes
- So far, all Higgs boson properties in excellent agreement with SM expectations

Outlook

- □ Some analyses already with complete LHC Run-2 data set (~140 fb⁻¹)
- Potential to understand data more in detail and increase measurement precisions
- Combination of ATLAS and CMS results: increase of sensitivities
- □ LHC Run-3 anticipated to add 300 fb⁻¹ (2021 to 2023), HL-LHC approved for 3000 fb⁻¹ (2026 -): new eras of measurement precision
- **Strong and approved LHC programme for new discoveries**

Acknowledgement

The project is supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project numbers LM2015058 and LTT17018.

Analyses and their luminosities used in ATLAS combination

ATLAS-CONF-2019-005	
Analysis	Integrated luminosity (fb^{-1})
$H \to \gamma \gamma \text{ (including } t\bar{t}H, H \to \gamma \gamma)$	79.8
$H \to ZZ^* \to 4\ell \text{ (including } t\bar{t}H, H \to ZZ^* \to 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$	36.1
$H \to \tau \tau$	36.1
$VH, H \to b\overline{b}$	79.8
$VBF, H \rightarrow b\bar{b}$	24.5-30.6
$H \to \mu \mu$	79.8
$t\bar{t}H, H \to b\bar{b}$ and $t\bar{t}H$ multilepton	36.1
$H \rightarrow \text{invisible}$	36.1
Off-shell $H \to ZZ^* \to 4\ell$ and $H \to ZZ^* \to 2\ell 2\nu$	36.1

ATLAS Combination Systematics

Institute of Experimental and Applied Physics Czech Technical University in Prague

43

ATLAS-CONF-2019-005	Uncertainty source	$\Delta \mu / \mu$ [%]
	Statistical uncertainty	4.4
	Systematic uncertainties	6.2
	Theory uncertainties	4.8
	Signal	4.2
	Background	2.6
	Experimental uncertainties (excl. MC stat.)	4.1
	Luminosity	2.0
	Background modeling	1.6
	Jets, $E_{\mathrm{T}}^{\mathrm{miss}}$	1.4
	Flavour tagging	1.1
	Electrons, photons	2.2
	Muons	0.2
	au-lepton	0.4
	Other	1.6
	MC statistical uncertainty	1.7
	Total uncertainty	7.6
	A.Sopczak , June 2019	

CMS Correlations STXS framework

CMS Supplementary $H \rightarrow \gamma \gamma$

77.4 fb⁻¹ (13 TeV)

								 . 1
qqH	-0.02	-0.07	-0.15	-0.18	-0.45	-0.35	1.00	0.8
ggH BSM	0.07	0.09	0.21	0.18	0.32	1.00	-0.35	0.6
ggH 2J	0.08	0.01	-0.08	-0.02	1.00	0.32	-0.45	0.4
								0.2
gg⊟ ij nign	0.08	0.06	0.10	1.00	-0.02	0.18	-0.18	
ggH 1J med	-0.04	0.08	1.00	0.10	-0.08	0.21	-0.15	-0.2
ggH 1J low	-0.28	1.00	0.08	0.06	0.01	0.09	-0.07	-0.4
								0.0
ggH 0J	1.00	-0.28	-0.04	0.08	0.08	0.07	-0.02	1
$\begin{array}{c} 9g_{H_{OJ}} & g_{gH_{1J}} & g_{gH_{1J}} & g_{gH_{1J}} & g_{gH_{2J}} & g_{gH} & g_{gH} \\ \eta_{high} & \eta_{high} & \eta_{gH} & \eta_{$								

CMS-PAS-HIG-18-029

44

Differential Higgs boson decay cross-sections, N_{jets}

 $\Box \text{ ATLAS: } H \rightarrow ZZ \rightarrow 4I$

□ CMS: Combined $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4I$, $H \rightarrow bb$

