Algorithm for calculating Bethe logarithm and adiabatic correction for atoms and two-centered molecules

Ewa Palikot, Monika Stanke

Nicolaus Copernicus University
Toruń, Poland
ep@fizyka.umk.pl

Our calculations based on NRDEQ expansion over $\alpha=\frac{1}{c}$.
$\mathrm{E}=\mathrm{E}_{\mathrm{nr}}+\alpha^{2} \mathrm{E}^{(2)}+\alpha^{3} \mathrm{E}^{(3)}+\alpha^{4} \mathrm{E}^{(4)}+\ldots$

The approach we developed is based on the general method for calculating matrix elements of an analytic function $f(\mathrm{~A})$ of an known operator A.

Bethe logarithm and adiabatic correction are defined as

$$
\begin{gathered}
\ln k_{0}=\frac{\langle\Psi| \mathbf{p}\left[\left(\mathrm{H}_{0}-\mathrm{E}_{0}\right) \ln \left(2\left(\mathrm{H}_{0}-\mathrm{E}_{0}\right)\right)\right] \mathbf{p}|\Psi\rangle}{\frac{1}{2}\langle\Psi|\left[\mathbf{p},\left[\mathrm{H}_{0}, \mathbf{p}\right]\right]|\Psi\rangle} \\
\delta E_{a d}=-\frac{1}{M}\langle\Psi|\left(\nabla_{\mathbf{R}} \mathrm{V}\right)\left(\mathrm{E}_{0}-\mathrm{H}_{0}\right)^{-1}\left(\mathrm{E}_{0}-\mathrm{H}_{0}\right)^{-1}\left(\nabla_{\mathbf{R}} \mathrm{V}\right)|\Psi\rangle-\frac{1}{4 M}\langle\Psi| \nabla_{\mathbf{r}}^{2}|\Psi\rangle .
\end{gathered}
$$

We use the identity operator I expressed in terms of non-ortogonal basis set. It has following spectral representation:

$$
\mathrm{I}^{p}=\sum_{a, b} c_{a}^{p}\left|\varphi_{a}^{p}\right\rangle\left\langle c_{b}^{p} \varphi_{b}^{p}\right|=\sum_{a, b}\left|\varphi_{a}^{p}\right\rangle c_{a}^{p} c_{b}^{p \dagger}\left\langle\varphi_{b}^{p}\right| \quad \text { - for atoms },
$$

where φ_{b}^{p} is the function describes states of p symmetry;

$$
\mathrm{I}=\sum_{a, b}\left|\varphi_{a}^{\Sigma}\right\rangle c_{a}^{\Sigma} c_{b}^{\Sigma^{\dagger}}\left\langle\varphi_{b}^{\Sigma}\right|+\sum_{a, b}\left|\varphi_{a}^{\Pi}\right\rangle c_{a}^{\Pi} c_{b}^{\Pi^{\dagger}}\left\langle\varphi_{b}^{\Pi}\right| \quad \text { - for molecules, }
$$

where φ_{a}^{Σ} and φ_{a}^{Π} are the sets of functions with Σ and Π symmetry respectively.

