

Busbars in the magnets and cryostats

H. Prin, D. Duarte Ramos, E. Todesco

With contributions from

A. Ballarino, L. Bottura, S. Izquierdo Bermudez, F. Rodriguez Mateos, V. Parma

Review of cold powering system, 3 July 2017

CONTENTS

- IR magnets features and choices
- Baseline for busbars
- Further developments

OVERVIEW OF IR MAGNETS

- From Q1 to D1: 150 mm aperture
- Triplet: four magnets Nb₃Sn, current 16.4 kA, peak field 11.5 T
 - In series plus trim on each magnet
- Orbit correctors: three magnets, nested, Nb-Ti, current 1.4/1.6 kA
 - Independently powered (six circuits)
- High order correctors: 9 magnets, Nb-Ti superferric, 200/100 A
 - Indepentently powered
- D1: Nb-Ti, current 12.0 kA, bore field 5.6 T

OVERVIEW OF IR MAGNETS

- Circuit baseline shown in F. Rodriguez Mateos talk
- Boundary conditions
 - Very tight longitudinal space short distance between magnets means performance
 - Very tight transverse space cold mass size at the limit of the cryostat size
 - Some magnets done by collaborations (Q1/Q3 by US-Hilumi AUP, D1 by KEK) – minimize interfaces, busbar crossing, etc.
- Four technical choices
 - A mixture of round and flat busbars
 - Some busbars inside the magnets, others in a parallel line
 - Quenching all magnets to protect the busbar
 - Keeping same design for Q1 and Q3 (reduce spares, flexibility in installation) at the cold mass level – Same for Q2a and Q2b

- IR magnets features and choices
- Baseline for busbars
- Further developments

- Triplet
 - One circuit rated at 18 kA plus trims (before we had two circuits, decision was taken in 2015/2016)
 - Three trims (2 kA rating needed) are rated at 7 kA to allow overcurrents during quench
 - Trim separating Q2a from Q2b not necessary for the beam dynamics, but needed for keeping the voltage to tolerable value

- Triplet «warm» diodes
 - Necessary to keep the voltages to tolerable values
 - Design will be compatible with the «cold» diode option

Triplet 18 kA main busbar: a mix of flat and round

- Flat busbars made of two Nb-Ti Rutherford cables inside the triplet, (see next slide)
- In the parallel line bypassing D1 and the corrector package we will have a round busbar

- Triplet 18 kA main busbar
 - Strand: Nb-Ti 1.065 mm diameter, 1.65 Cu/no Cu (LHC inner cable strand)
 - One cable made with 34 strands to have the same width of QXF cable
 - Flat busbar is a double cable (as the US cables used for Nb-Ti leads in the magnets)
 - Round busbar is a round cable with the same number and type of strands (to be developed)
 - Cu surface: 38 mm²
 - Sc surface: 23 mm²
 - Cable surface: 61 mm²
 - 265 MIITs at 300 K
 - 200 MIITs at 200 K

- Triplet trim busbars
 - We consider a 18 kA round cable (to be developed)
 - Same used for the main along the corrector package and D1
 - Travelling through the parallel line and entering in the interconnection

THE BUSBAR IN THE Q1/Q3

- Q1/Q3 are split in two magnets (made in US)
 - Bus bar cartridge goes through the cold mass, and one of the two busbars is spliced to the magnets on each side
 - This busbar is needed for mid 2019 (first US cold mass)

• The busbar version for Q2 is needed for fall 2018

BUSBAR SUMMARY

		I _{nom} (kA)	I _{ult} (kA) / I _{max} *	Busbar	Sc wire	Cu/S c ratio	Bubar Cross Section	Stabilsation	
	IT Main Circuit inside the cold masses	16.5	17.82	New	34 NbTi wires type 01 LHC strand Ø1.065mm	1.6	18.15 x 1.92mm x2 with stab	Doubled cable Or same copper cross section	
	D1 Circuit	12	12.96	Present LHC 13kA cable	36 NbTi wires type 02 LHC strand Ø0.825mm	1.9	15.1 x 1.48mm X2 with stab	Doubled cable Or same copper cross section	
	IT Main Circuit along the cold masses	16.5	17.82	New	To be devloped				
	Trim leads	2	2 / 6.8*						
	Orbit Corrector	1.6 /1.47	1.73 /1.59	New or Present LHC 6kA cables	To be developed				
	High Order Correctors	0.182 /0.105	0.2 /0.12	Present LHC 600A cables	7 Cu wires Ø0.96 mm	9.5	42x600A wires in Ø16.7mm	N/A	
	CLIQ leads	2.8 (12Hz fast decay)		New	N/A	N/A	Ø5.14mm	Silver Platted copper	COR

HILUMI

INTERCONNECTIONS AND PARALLEL LINES

- The parallel line has a interconnection on the magnet axis
- Flat 18 kA main busbars (cartridge) go through one of the lower yoke holes
 Heat exchangers
- Upper yoke holes used by heat exchanger
- Fourth hole used to carry through He
 - 150 mm² between triplet, 100 mm² D1 and CP

interconnection box, 137 mm diameter INFORMATION OF A CONTRACT OF A CONT

- Triplet trim on Q1a (recent requirement, low current of 35 A)
 - Resistive lead with local powering
 - The same is put on Q3a to avoid symmetry breaking
- Triplet CLIQ leads (2 kA for short time ≈100 ms)
 - Resistive leads with local powering
 - Standard Cu wire of 5.14 mm diameter

Instrumentation feedthrough

Q1 trim and CLIQ trim feedthrough

- Orbit corrector busbars
 - These are 6 × 2 busbars rated at 2 kA
 - Short corrector MCBXFB: Entering Q2a and Q2b at the Q2a/Q2b interconnection from the parallel line, travelling through Q2a/Q2b yoke with main busbar

• Long corrector MCBXFA: entering the CP from interconnection

- D1 busbar
 - The 13 kA LHC busbar, entering at the level of D1
- High order corrector busbars
 - 600 A LHC busbars, entering at the level of the CP
 - No leads going through neither D1 nor the CP

18 kA CIRCUIT PROTECTION

- How to protect from busbar quench
- Threshold of 100 mV (from R. Denz)
- With a propagation velocity of 2 m/s, the threshold is reached in 200 ms (from L. Bottura)
 - Field is of the order of 1-2 T
 - Temperature margin of 6.0-6.5 K
 - This consumes 60 MIITs
- When quench is detected, heaters are fired
 - Time constant of the circuit with quenched magnets is of the order of 0.2 ms, 35 MIITs consumed
- With the 200 MIITs at 200 K, we consume less than 100 MIITs, so we are safe
 - A quench velocity of 1 m/s, 400 ms detection time would be also safe

CONTENTS

- IR magnets features and choices
- Baseline for busbars
- Further developments

FUTHER DEVELOPMENTS

- Definition of 18 kA round busbars
- Definition of 2 kA corrector busbars (reusing 6 kA?)
- Topology of expansion loops
 - No space for lyra, pigtail needed
- Splices between round and flat cables
- Voltage taps number and position, instrumentation

CONCLUSIONS

- Busbar baseline has been outlined
 - Two flat 18 kA through the magnets (main circuit)
 - Three round trims also at 18 kA from interconnections
 - Parallel line to avoid crossing of corrector package and D1
 - Busbar protection requires quenching the triplet
- Some parts have to be developed
 - Round busbar geometry, round-flat splices, expansion loops, voltage taps

