

MgB₂ cables: design, manufacturing and assessment

K. Konstantopoulou, J. Hurte, P. W. Retz, A. Gharib, A. Ballarino

International Review of the Conceptual Design of the Cold Powering System for HL-LHC Superconducting Magnets. CERN 3-4 July 2017

Outline

- Introduction
- Design parameters
- Experimental R&D assessment
 - Cabling at CERN
 - Tests and results
- Industrial cabling process
- Conclusions

Introduction: Problem statement

Design, for the first time, of a MgB₂ multi-cable assembly by using an *ex-situ* superconducting wire:

- Different sub-cables carrying currents up to 18 kA.
- Made with 1 mm MgB₂ reacted wire.

- Definition of the main cabling parameters: tensile load, twist pitch and bending radius.
- Complexity of the cabling process due to the electro-mechanical performance of the MgB₂ wire.

Introduction: Problem statement

Introduction: Performed activities

- Electro-mechanical characterization of the 1 mm MgB₂ wire at RT and 4.2 K.
- Definition and evaluation of the main cabling parameters.
- Cable manufacturing and experimental validation.
- Overseeing of the industrial manufacturing.

Design parameters: MgB₂ wire critical strain

Mechanical characterization of the MgB₂ wire

- Tensile tests at RT and at 77 K
- Single bending tests
- Triple bending tests
- Nanoindentation measurements

	MgB ₂	Nb	Ni	Nb-Ni	Monel	Cu
E (GPa)	97	103	207	230	179	118

1 mm wire	E (GPa)	σ _{y, 0.2%} (MPa)
RT	151 ± 2	244 ± 3
77 K	162 ± 1	323 ± 3

Sugano M. et al. 2016 Supercond. Sci. Technol. 29 025009.

Konstantopoulou K. et al. 2016 Supercond. Sci. Technol. 29 084005.

Konstantina Konstantopoulou

Design parameters: MgB₂ wire bending radius

ε _t (%)	ε _t / ε _{crit,RT}	R _{b, wire} (mm)
0.05	0.19	656
0.10	0.38	328
0.15	0.58	218
0.20	0.77	164
0.25	0.96	131
0.30	1.15	109

 ϵ_t : tensile strain in the outer MgB₂ filaments. R_{b,wire}: bending radius of the MgB₂ wire.

Konstantopoulou K. et al. 2016 Supercond. Sci. Technol. 29 084005.

Design parameters: MgB₂ wire on "Composite strand" cable

ε _t (%)	ε _t / ε _{crit,RT}	R _{b, wire} (mm)	T _{p, wire} (mm)
0.05	0.19	656	276
0.10	0.38	328	195
0.15	0.58	218	158
0.20	0.77	164	137
0.25	0.96	131	122
0.30	1.15	109	111

 ϵ_t : tensile strain in the outer MgB₂ filaments.

 $R_{b,wire}$: bending radius of the MgB₂ wire.

 $T_{p, wire}$: twist pitch of the MgB₂ wire in the "Composite strand" cable.

Design parameters: proposed for sub-cables

		Wire/Cable	Φ (mm)	R _b (mm)	T _p (mm)		Tensile load (kg)
¢ spool ≈ 3.5 m	•	MgB ₂ wire	~1.0	100	180	200	1.5 ± 0.5
	۲	Composite strand	~7.5	300	600 - 800 - 1000		5 - 10
		18 kA rope cable	~24.0	550	1300		15 - 20
	۲	7 kA cable	~10.5	400	600		10 - 15
	8	Triplet 7 kA coaxial cable	~23.5	550	-		15 - 20
	\bigcirc	2 kA coaxial cable	~11.5	400	600		10 - 15
	8	Triplet 2 kA cable	~25.0	550	130	00	15 - 20

The tolerance of the design parameters for the sub-cables is to be defined.

CERN

Experimental R&D assessment: cabling at CERN

- 25 configurations of "Composite strand" MgB₂ cables have been prepared at CERN to validate the cabling parameters. Twist pitch = 160 400 mm.
- 1 configuration of "2 kA coaxial cable" has been prepared at CERN and tested in FRESCA test station.
- 4 samples of "18 kA rope cable" have been prepared at CERN and measured at SM18.

1 kN load cell

Cu core MgB₂ strands

 $T_p = 170 \text{ mm}$

"Composite strand" MgB₂ cable

"2 kA coaxial cable"

- 1 m long "Composite strand" MgB₂ cables were bent around a spool of 400 mm diameter, without additional applied load (single and double bending).
- 3 m long "Composite strand" MgB₂ cables were bent around a spool of 600 mm diameter by applying tensile load of 10 kg per cable.

Spool diameter = 600 mm

 I_C measurement of "Composite strand" MgB₂ cable at FRESCA test station

Images by courtesy of S. Giannelli (CERN).

 I_C measurement of extracted strands at 4.2 K and in 3 T parallel field. No or negligible (<5%) I_C degradation was observed.

Konstantina Konstantopoulou

 I_C measurement of MgB₂ cables at FRESCA test station and at SM18

"2 kA coaxial cable"

"18 kA rope cable"

Giannelli S. et al. 2015 Internal Note 2015-03, EDMS Nr. 1476839.

Data by courtesy of J. Fleiter (CERN).

 I_C measurement of MgB₂ cables at FRESCA test station and at SM18

Giannelli S. et al. 2015 Internal Note 2015-03, EDMS Nr. 1476839.

Industrial cabling process: "Composite strand" MgB₂ cable **(**

- The industrial manufacturing of "Composite strand" MgB₂ cables were carried out by TRATOS Cavi SpA (Italy), industrial partner and charter member of ICAS.
- 1st contract phase: 12 samples "Composite strand" MgB₂ cables (6 straight and 6 bent) for the validation of the cabling process. The total length of the cables is 5 m.

	"Composite strand" MgB ₂ cable	Tensile load per wire (kg)	T _p (mm)	ε _t (%)
All the best	SC sample #1	1.5	200	~ 0.09 < 0.2
cables were	SC sample #2	1.5	170	~ 0.14 < 0.2
spooled on 450 mm diameter spools.	SC sample #3	1.5	150	~ 0.18 < 0.2
	SC sample #4	2.5	200	~ 0.11 < 0.2
	SC sample #5	4.0	170	~ 0.16 < 0.2
	SC sample #6	2.5	170	~ 0.15 < 0.2

Industrial cabling process: "Composite strand" MgB₂ cable

Cabling machine layout at TRATOS Cavi SpA.

Industrial cabling process: "Composite strand" MgB₂ cable

Experimental assessment at CERN

- The I_C of 135 extracted strands, from the received cables, was measured at 4.2 K and in parallel field up to 3 T.
- No or negligible (<5%) I_C degradation was observed when the tensile load per wire was 1.5 kg and twist pitch of 200 mm.

Experimental assessment at CERN

Industrial cabling process: 25 m long "Composite strand" MgB₂ cable

- 2st contract phase: One 25 m long "Composite strand" MgB₂ cable for the qualification of the long cabling process. The cabling parameters are: twist pitch of 180 mm, bending radius of 300 mm and tensile load per wire 1.5 kg.
- Single and double bending of a "Composite strand" MgB₂ cable on a 600 mm diameter spool.

Industrial cabling process: 25 m long "Composite strand" MgB₂ cable

Shape recovery of a "Composite strand" MgB₂ cable after single and double bending.

No additional force was applied during the bending.

Industrial cabling process: upgraded machine

Cabling machine for "Composite strand"

Cabling machine for the bigger sub-cables.

Image: Confidential information

Conclusions (1/2)

- A thorough electro-mechanical characterization of 1 mm MgB₂ wire has been carried out at CERN for the determination of the adequate cabling parameters.
- Short length samples of "Composite strand" cables, "18 kA rope cable" and "2 kA coaxial cable" have been prepared and experimentally validated at CERN. I_C measurements of cables and extracted strands.
- The minimum bending radius, minimum twist pitch and maximum tensile load of the MgB₂ wire and cables have been proposed considering the geometry of each sub-cable and the mechanical performance of the MgB₂ wire at RT.

Conclusions (2/2)

- Twelve samples (straight and bent) of "Composite strand" MgB₂ cables have been manufactured by TRATOS Cavi SpA. and measured at CERN for the assessment of the cabling parameters and the industrial cabling process.
- A 25 m long "Composite strand" MgB₂ cable with *twist pitch* of 180 mm, *tensile load per wire* of 1.5 kg and *bending radius* of 300 mm has been manufactured and shipped at CERN, by TRATOS Cavi SpA.
- Experimental assessment at CERN of the 25 m long "Composite strand" MgB₂ cable.
- Specification for the "18 kA rope cable" and the "2 kA coaxial cable".

Thank you for your attention

Acknowledgements: Many thanks to Sebastiano Giannelli, Jerome Fleiter, Jean-Eudes Maurice Duvauchelle, Alban Stimac, Jean-Sebastien Denis, Gerard Perrier Gros Claude, Pierre-Francois Jacquot, Anne Eychenne, Francis Beauvais and Bernardo Bordini.

