

Interconnection boxes : DFX

International Review of the Conceptual Design of the Cold Powering System for the HL-LHC Superconducting Magnets : 3-4 July 2017

Y.Leclercq and V.Parma on behalf of the DF cryostats design team (WP6a) C. Ortiz Ferrer, F.Pasdeloup, I. Falorio, J-B Deschamps WP6a workpackage leader : A. Ballarino

Outline

- Context : DFH-SCLink-DFX cryostat
- Planning and milestones
- DFX design
 - Conceptual layouts
 - Detailed design overview
 - Identified key technical challenges
- Next steps

Note: 3D models are illustrative, the detailed design of the DFX is not started yet.

Context

- Each IP1 and IP5 sides equipped with 2 cold powering chains of cryostats
 - Triplet insertion : DFH SC Link (DSH) DFX
 - Matching sections : DFH SC Link DFM
- DFX basic functions:
 - Electrical interface between SC Link and triplets string (Q1-D1) through D1 cryostat
 - Supply cryogenics to the SCLink

Illustration of the position of the DFX (not latest version for details)

LHC

Planning – DFX & DFH cryostats key dates

- Strategy: Design of DFX-DFH cryostats series
 - In parallel with demonstrator to validate choices
 - Prototypes to be tested in string

DFX concept

Key concepts:

- Main boundary conditions for the design:
 - Future maintenance carried out in an activated zone → to be limited and optimised
 - Interferences with the beam tube shall be minimised
- Mechanically independent from the beam tube and the SC link.
 - → No perturbation to beam alignment (\2 vacuum loads, thermal contraction loads, SC link loads, cryogenic pressure fluctuations)
 - → No constraints from beam specs.

Insulation vacuum layout

- DFX insulation vacuum shared with triplet insulation vacuum
- SCLink has independent vacuum volume and equipment.
- Figures:
 - Target value : 1.10⁻⁵ mbar
 - Design pressure of vacuum vessels PS < 1.5 bara
- Objective :
 - adapt conductance at D1-DFX to avoid additional pumping equipment (and associated maintenance). To DFH
 - Dedicated relief pressure protection

Cryogenics layout

General layout : see Serge Claudet's talk

- Thermal shielding :
 - Conduction cooled from triplets circuit : Tmax < 95 K
 - Line for SCLink thermal shield active cooling 20 K
- Tmax of superconductors in DFX:
 - T(Nb-Ti) < 5.5 K
 - $T(MgB_2) < 20 K$
- Superfluid helium volume from triplets
- Saturated helium bath @ 1.3 bara
 - Vapor produced to match current leads needs (heaters to produce up to 10 g/s)

- Principle:
 - Heaters (designed up to 200W) vaporizes liquid forcing the gaseous mass flow through the SCLink
- Key technical challenges :
 - Plug between SFHE and LHe (replaceable)
 - Lhe-Ghe interface
 - Interfaces to D1, to SCLink
 - Instrumentation redundancy policy
 - Heaters technology
 - Splice resistivity definition

Heat loads preliminary estimations

To the 40-60K Triplets TS circuit : ≈ 20 W

- Radiative heat exchange : Thermal shield equipped with MLI : $\dot{Q}_{rad} \approx 10 W$
- Conduction heat exchange : supports : $Q_{Cond} \approx 10 W$

To the 4.5 K saturated bath:

- Dynamic loads :
 - Nb-Ti/Nb-Ti : LHC experience R<1.5 nΩ @ 3σ
 - MgB₂/Nb-Ti : R≈10 nΩ starting point, studies on-going
 - → Total splices heat dissipation < 10 W (lult)

- Static loads : < 20 W
 - Supports + services : $\dot{O}_{cond} < 20 W$
 - Through plug : few Watts to 1.9 K volume

Mechanical layout

Fixed points

- Vacuum envelopes :
 - SC Link, DFX, independent from D1-Beam tube
- Helium vessels
 - SC Link, DFX, independent from D1-Beam tube
- Cables fixed points :
 - SC Link, Plug

- Thermal contraction
 - MgB₂ cables in SC Link (see P. Retz' presentation)
 - DFX cables : locally
 - D1 interface cables: to be studied
- Challenges
 - Interface D1
 - Installation (see V. Parma's presentation)

Electrical layout

Maintainability

- Instrumentation → redundancy being evaluated
 - T-sensors
 - V-taps
 - Level gauges
 - Heaters
- Vacuum equipment (valves + pumps), leak detection access if required : to be studied
- Plug is foreseen replaceable
- Access to Nb-Ti/Nb-Ti solders optimised

- Maintenance of MgB₂-NbTi solders may require :
 - Disconnection of Nb-Ti solders
 - Disassembly of SCLink-DFX
 - No spare MgB₂ cables
- All maintenance operations to be performed in radioactive environment

CPS review 3 July

Installation sequence

D1 and electrical connection up to plug pre-installed Installation DFX + SCLink (see V. Parma's presentation) Welding Helium volumes DFX-SCLink Insulation vacuum interface DFX-SCLink Electrical connection Nb-Ti / Nb-Ti Closure Helium volume Thermal shield Vacuum vessel sleeve

DFX design : 3D Model

Identified key challenges

Work on identified technical challenges

- Plug : activity starting (resources available from October)
 - State of the art studied
 - Dedicated lab being set-up
 - Be able to reproduce existing plugs used in LHC
 - Adapt to new cables, new specifications
- Heaters technology : well advanced
 - Specs. of needs and state the of art studied → report soon in EDMS (I. Falorio)
 - Technical solution based on CERN cryogenic group's experience
- LHe-Ghe barrier : being studied
- Splices resistivity:
 - NbTi-NbTi : based on LHC measurements campaign measure as basis (March 2012)
 - MgB2-Nb-Ti : studies on going
- Splices integration : in progress
 - Mock-up in SMI2 for real visualisation and future access testing
 - 3D study in parallel
 - define overall integration
 - ➡ define conductance with D1 and pumping equipment needs
- Mechanical interfaces with D1 : being studied
 - D1 : cryogenic integration, fixed points for piping, cables.
- Mechanical interfaces with SCLink : studies in progress
 - Installation (see V. Parma's presentation), detailed design,

 Focusing resources on technical challenges

Conclusions

The DFX design is well advanced within limits of today's knowledge

- Needs are clear and detailed specs are in progress (first-order values defined)
- Engineering concepts defined and feasible (most from LHC experience)
- Key challenges identified (e.g. plugs, splices) and *ad-hoc* actions being implemented
- Several technical challenges ahead but no showstoppers identified
- The engineering and detailed design workload remaining is heavy, especially considering parallelism on various working fronts
- Forthcoming activities:
 - Design of SC link extremity and integration of SC link cable (MgB2-NbTi extensions geometry)
 - Design/construction of a DFX demonstrator (DDFX), a focused prototype to validate the DFX main concepts for a system test from April 2018
 - The DFH: start conceptual design, aiming at an overall concept towards end 2017
 - 2018 should be dedicated to detailed design and drawings for procurement of DFX and DFH prototypes for a procurement to start in Q4 2018

