

Requirements for the protection of the SC links components¶

A. Ballarino

Acknowledgements: R. Denz, J. Fleiter, J. Hurte

International Review of the Conceptual Design of the Cold Powering System for the HL-LHC Superconducting Magnets

Outline

- Protection of components: strategy, protection thresholds, hard-wired and software interlocks
 - Current Leads
 - Superconducting Link
 - Electrical splices
- Transient analysis
 - Dimensioning of components vs circuit requirements
- Measurements
 - Quench of MgB₂ cables
 - Electrical splices
- Conclusions

Protection of Cold Powering System

- Active protection of superconducting components and current leads
 - Individually protected: resistive part of each lead, superconducting part of each lead, MgB₂ and Nb-Ti cables

Protection thresholds

- Resistive part of each lead: ~ 100 mV (as in LHC). Long integration times (few seconds) permitted
- HTS part of each lead: 1 mV-5 mV (as in LHC). Electronics specifically developed for LHC HTS leads— successfully operational in the tunnel. Integration times of ~ 100 ms permitted
- MgB₂ cables: 50 mV 100 mV. Integration times ~ 100 ms permitted
- Monitoring of individual splices (MgB₂ to HTS, MgB₂ to Nb-Ti and Nb-Ti to Nb-Ti)

Protection of Cold Powering System

	Nb. of cables (HTS or MgB ₂) protected	Nb. of leads protected (resistive part)
18 kA	6 (cable strands)×4 (cables)	4
7 kA	1 × 3	3
2 kA coaxial	2 × 6	12

CERN

A. Ballarino

Protection of Cold Powering System: interlocks

Nb₃Sn wire implementation

- Nb₃Sn strand selected for evaluation. Requirements:
 - High T_c (~18 K) with sharp transition (low ΔT_c)
 - Excellent strain tolerance
- Proposed solution:
 - Fully-reacted, fine-filament bronze route strand with diameter <1 mm
 - Well-characterised ITER TF conductors are suitable: particularly Bruker EAS or Hitachi
 - Heat treatment trials on Φ 300 mm spools (as used for MgB₂), and resistive T_c testing, are scheduled

Work on-going, S. Hopkins

Temperature interlock triggering a slow power abort

6

Protection strategy and transient analysis

Case 1: Quench of MQXF magnets. Effect of MgB₂ cables due to over-currents in the circuit → No quench of MgB₂ cables

	Magnet	Cold Powering			
	l _{ult} (kA)	I _{peak} (kA)	I _{lead} (kA)	I _{cable} (kA)	N _{leads} /N _{cables}
MQXF	17.82	-	18	18	2
Trim Q1	2	2.4	2*	7	1
Q2a/Q2b	Protec.	5.6	2*	7	1
Trim Q3	2	6.8	2*	7	1

- SC Cables designed to transfer 7 kA in DC mode
- Leads designed to transfer the over-currents without overheating

Protection strategy and transient analysis

- Case 2: Quench of SC Link. This triggers the quench of the magnets
- Quench of 18 kA or 7 kA cables/leads → firing QPS of MQXF magnets (Quench heaters + CLIQ)
- Quench of 13 kA cables/leads of D1 → firing QPS of D1 (Quench heaters)
- Quench of 2 kA cables/leads→ Quench heaters or energy extraction

Rating (kA)	MIITs (kA²⋅s)	τ _Q (quench of magnets) (s)	Equivalent time (s)
18	32	0.2	0.1
2	1	0.5	-
7	5	0.2	0.12

Circuits parameters

Quench of a SC link is a very rare event

A. Ballarinc

Protection strategy and transient analysis Quench of SC Link

	Rating (kA)	ACu (mm ²)	MIITs	Tmax	
Cu braid around	18*	200	15+32	57	
each composite	2**	34	15+1	34	
strand	2 (7)***	36	15+5	35	

Cu RRR=100

15 MIITs for reaching the100 mV detection threshold across a cable

- * It reaches 200 K with τ =30 s
- ** It reaches 42 K with τ_n =20 s
- *** It reaches 67 K with τ_n =130 s (and I=2 kA)

Protection of MgB₂ cables

 Measurements in nominal conditions in the test station in the SM-18

10

Protection of MgB₂ cables

Electrical splices

Three types of splices will be used in the link:

- MgB₂/HTS in the DFH
- MgB₂/Nb-Ti in the DFX
- Splice resistances systematically addressed for:
 - Single MgB₂ wire
 - MgB₂ cable (to MgB₂ and to Nb-Ti)
 - HTS strands and cable

MgB₂ wire to MgB₂ wire

TABLE I VALUES OF ELECTRICAL RESISTIVITIES AT DIFFERENT TEMPERATURES

Matarial	45 K	10 K	15 K	20 K	25 K
wateria	4.J K	10 K	13 K	20 K	23 K
Nickel*	0.626	0.626	0.671	0.716	0.791
Nickel [†]	_	_	10.7	10.8	10.9
Copper RRR 30*	0.531	0.532	0.534	0.543	0.562
Copper RRR 100*	0.156	0.156	0.158	0.167	0.186
Niobium*	0.264	5.1	6.11	5.64	5.77
Monel*	278	278	278	278	278
Monel [†]	367	368	368	370	372

Values are reported in $n\Omega \cdot m$.

*Data from CryoComp v5.1. These data have been used in the models.

[†]Data from measurements at Columbus Superconductors.

CERN

Measured vs calculated

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, JUNE 2017

S. Giannelli, G. Montenero, and A. Ballarino

A. Ballarino

MgB₂ cable to Nb-Ti

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, JUNE 2017

S. Giannelli, G. Montenero, and A. Ballarino

Electrical splices – MgB₂ cable to Nb-Ti cable

Measurements in Fresca test station, CERN

- 18 kA rope cable: 2- 4 nΩ (up to 26 kA)
 (<1 nΩ achievable)
 - 200 mm long splice
 - Two half shell made of copper
 - Two Nb-Ti Type 02 LHC cable (15.1x1.48 mm)

• 2 kA coaxial cable: $\leq 5 n\Omega$ (up to 13 kA)

- 200 mm long splice
- Two half shell made of copper
- Nb-Ti Type 02 LHC strands

J. Fleiter and J. Hurte, Internal Note on measurement in Fresca test station

MgB₂ cable to MgB₂ cable in He gas

Fig. 10. Comparison of measured and calculated resistance data of 400 mm long MgB₂-MgB₂ cable splices.

Fig. 11. Comparison of measured and calculated resistance data of 250 mm long MgB_2 - MgB_2 cable splices.

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, JUNE 2017

S. Giannelli, G. Montenero, and A. Ballarino

A. Ballarino

Conclusions

- Strategy for quench protection of each element of the Cold Powering System has been defined
- Experience from LHC design/operation of components has been used for the for definition of protection requirements
- Discussions with quench protection team confirm feasibility of proposed solutions (see next talk of R. Denz)
- The thresholds selected for protection are the results of modelling and measurements performed in nominal conditions (cryogenic and electrical)
- The test program that aims at the validation of a system demonstrator and a prototype system includes validation of quench protection strategy and hardware (dedicated electronics)

Thanks for your attention !

Additional slides

Electrical splices – MgB₂/HTS

Three topologies of splices for REBCO tapes

- Type 0: no substrate interleaved
- Type 1: 1 substrate interleaved
- Type 2: 2 substrates interleaved.
- Measured at 4 K and in field up to 12 T
- Measured at 77 K in self field

=>Type 0 splices: Lowest resistance - constant versus field and temperature

- ~40 nΩ·cm² at 4 K (≤ 1 T)
- => Type 1 splices: higher resistance dependent on copper RRR
- ~300 nΩ.cm² at 4 K (≤ 1T)

 $R \le 10 \ n\Omega$ at 20 K 250 mm long splice

J. Fleiter et al., **In-Field Electrical Resistance at 4.2 K of REBCO Splices**, IEEE trans. on Appl. Supercond., Vol. 27, No. 4, June 2017

