

# Protection system for the SC links definition

R. Denz

Acknowledgements:

A. Ballarino, J. Steckert



International Review of the Conceptual Design of the Cold Powering System for the HL-LHC Superconducting Magnets

# Outline

- Requirements for quench detection and boundary conditions
  - Link layout, voltage taps, detection settings
- Proposed solutions
  - Quench detection electronics, integration into LHC supervision etc.
- Open issues
  - Powering scheme for higher order correctors
  - Crosstalk in MgB<sub>2</sub> cables
- Summary



# Requirements

- Requirements defined by equipment specialist → see presentation by Amalia
- Active protection for current leads and MgB<sub>2</sub> cables
  - Quench detection systems will trigger a fast power abort of the power converter(s) and a discharge of the circuit by active protection means (= quench heaters, CLIQ, energy extraction systems for 2 kA correctors tbc)
- Usage of a Nb<sub>3</sub>Sn wire for the supervision of the complete MgB<sub>2</sub> cable link
  - Hardwired interlock or integration into LHC software interlocks (SIS)
- Monitoring of individual splices requested
  - $MgB_2 \rightarrow HTS$  and  $MgB_2 \rightarrow NbTi$
  - Interlocking capability can be added on request



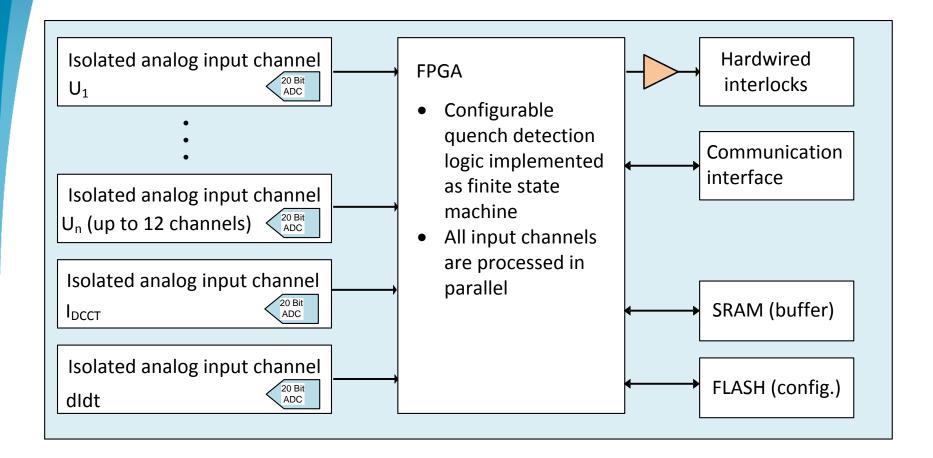
#### **Proposed quench detection settings**

- Current leads
  - Resistive part:  $U_{TH} = \pm 100 \text{ mV}$ ,  $t_{EVAL} \le 1 \text{ sec}$
  - HTS part:  $U_{TH} = \pm 1 \text{ mV}$ ,  $t_{EVAL} \le 500 \text{ ms}$
- MgB<sub>2</sub> cables
  - $U_{TH} = \pm 50 \text{ mV} \dots \pm 100 \text{ mV}, t_{EVAL} \leq \sim 1 \text{ sec}$
- Nb<sub>3</sub>Sn wire
  - Trigger on transition to resistive state
- Detection filter settings for all quench detection systems can be modified remotely for each individual channel
  - Maximum permitted settings will be hardcoded



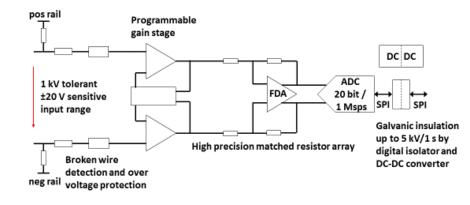
#### Instrumentation for quench detection systems

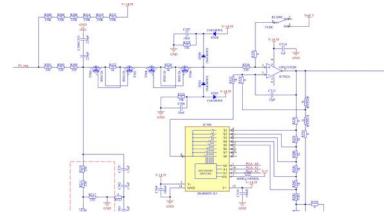
- All voltage taps required for protection must be redundant
  - Exact location for some taps still to be defined
  - Final implementation to be approved by equipment specialist and MP3
- Current leads
  - Very well done for LHC; no issues so far  $\rightarrow$  just copy
  - Taps brought out from the warm terminal of each lead
  - Warm instrumentation cabling on the DFB level (between lead and proximity equipment) may need to be revised with respect to LHC
- MgB<sub>2</sub> cables
  - Voltage taps to be brought out on DFH and DFX level
  - The instrumentation cable from the DFX must be routed along the SC link DSH towards the DFH
    - No need to route instrumentation wires through the link itself

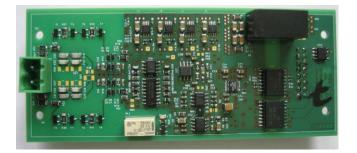



#### **Quench Detection Systems**

- Quench Detection Systems (QDS) for current leads and MgB<sub>2</sub> cables will be based on the next generation of QDS systems currently being developed for HL-LHC
  - Completely new development based on the experience gained with the LHC QDS so far
  - Each QDS system is independent and equipped with its own interfaces for interlocks and communication
  - Aim of the new designs is a versatile system capable of covering most of the quench detection requirements for the superconducting circuits of the LHC
- The new QDS is to a very large extent software-defined
  - Functional components like filters, voltage comparators or time discriminators are implemented in the device firmware and no longer in hardware
- HL-HC QDS in point 1 and 5 will be installed in radiation free areas
  - More flexibility in selection of electronic components
  - Avoids tedious radiation test campaigns





### **QDS for HL-LHC: Conceptual Design**






## **QDS for HL-LHC: Polyvalent Analog Input Channel**







| Parameter                          | Value                            |
|------------------------------------|----------------------------------|
| Active input voltage range         | ±20 mV ±20 V                     |
| Max. differential input voltage    | 1 kV (1 sec)                     |
| Insulation withstand voltage level | 5 kV (1 sec), 2.5 kV (10<br>min) |
| Resolution (20 Bit 1 Msps<br>ADC)  | 40 nV/LSB 40µV/LSB               |
| Cut-off frequency                  | 100 kHz                          |



# **QDS for HL-LHC: Signal Processing**

- Effective input signal filtering is crucial for the suppression of erroneous QDS triggers
  - New analog input stages have a relatively large bandwidth with a cut-off frequency of 100 kHz
  - Digital signal processing with tailor made filter chains adapted to the properties of the protected element
    - Non-linear filters for voltage spike suppression
    - FIR filters adapted to the LHC noise environment for high precision measurements, e.g. HTS leads, MgB<sub>2</sub> links and superconducting busbars
- QDS device configuration can be remotely updated and checked
  - Essential feature during system test and commissioning
  - Eases system maintenance significantly



### **Open Issues**

- Powering scheme for IT higher order correctors needs to be confirmed
  - MgB<sub>2</sub> cable links versus local powering → important input as not always active quench detections systems are required
  - With few exceptions the magnets are self protected
- Crosstalk and other electromagnetic compatibility issues affecting in the MgB<sub>2</sub> cable links may still require some attention (see presentation by Yifeng Yang)
  - Quench heater firing and CLIQ activation to be avoided in case of simple circuit trips e.g. power converter fault
  - System should be immune to external electrical perturbations
  - The relatively long permitted evaluation times should allow to implement efficient measures assuring sufficient immunity



# Summary

- Requirements in terms of protection as specified by the equipment designer are fully compatible with the quench detection electronics too be used within HL-LHC
  - Proposed voltage tap layout is appropriate; there is no need to route instrumentation wires through the cold part of the link but external warm cabling should be aligned to the link cryostat
  - Additional functionality like the usage of a Nb<sub>3</sub>Sn wire for the protection of the complete link can be accommodated as well
  - Monitoring of splices will be integrated as requested
- Development of the next generation of quench detection systems for HL-LHC is advancing well
  - Prototype systems will be available for validation within test program of the cable demonstrator and prototype

