Introduction to Muon Collider & $\gamma\gamma$ **Collider**

Weiren Chou

22 February 2018, CAS, Zürich, Switzerland

Outline

- A brief history of particle accelerators and colliders
- Muon collider
	- ◆ µ⁺µ⁻ collider *vs* e⁺e⁻ collider
	- "Traditional" muon collider
	- ◆ Muon collider for Higgs factory
	- New idea for a muon collider
- $\gamma\gamma$ collider
	- Principle
	- \blacklozenge $\gamma\gamma$ collider for Higgs factory
	- Example How to build a low energy $\gamma\gamma$ collider

Beginning of the Particle Accelerator Era

1919: Ernest Rutherford

discovered the nuclear disintegration by bombarding nitrogen with alpha particles from natural radioactive substances. Later he **called for "a copious supply" of particles more energetic than those from natural sources.** The particle accelerator era was born.

First Accelerators

1928: Rolf Wideröe, 88 cm glass tube linac

1930: Ernest Lawrence, 4" cyclotron

1929: Van de Graaff generator

1932: Cockcroft-Walton electrostatic accelerator

First Colliders

1961: AdA first lepton collider 1969: ISR first proton collider

World's Largest Collider – LHC (27 km)

Tens of Thousands Accelerators were built

Light Sources

Neutron Sources

Medical Accelerators Industrial Accelerators

Scores of Colliders were built

- Started in 1960s, first 3 colliders: *AdA* in Italy, *CBX* in the US and *VEP-1* in Russia (then Soviet Union).
- Since then, we have built more than 20 *ee* colliders.
- We have also built 5 *pp* and *ion-ion* colliders as well as one *ep* collider.
- **However, we have never built a muon collider, nor a yy collider** because technically it is very difficult.
- But things are changing there is a new idea about muon collider, and today's advanced laser technology makes $\gamma\gamma$ collider immediately possible. 8

Comparison of Four Particles

A collider requires the following properties of particles:

- Copious supply
- ◆ Small emittance
- ◆ Stable
- Charged

⁺ - Collider vs e ⁺e - Collider

Advantages:

- Synchrotron radiation $\propto E^4/m^4$, m(μ) = 207 x m(e) \Rightarrow high energy muon collider ring possible
- A TeV muon collider ring is small and can fit to the size of existing labs (e.g., Fermilab)
- Beamstrahlung (synchrotron radiation as two beams collide) also \propto E^4/m^4 , which is suppressed in a muon collider ring
- In a Higgs factory, the s-channel $(\mu^+ \mu^- \rightarrow H)$ cross section ∞ m², $[m(\mu)/m(e)]^2 \approx 43,000$

Disadvantages:

- In a "traditional" muon collider, initial muon beam has large 6D emittance and must be cooled by a factor of 10^7 (10^3 in each of the two transverse directions and 10 in longitudinal)
- Cooling and acceleration must be fast (lifetime $= 2.2 \mu s$ at rest, but increases as *E/E⁰*)
- Ring magnets and detector requires heavy shielding from decay electrons

Relative Size and Energy of Colliders (R. Palmer)

LHC	
PPP	
ILC	$e^+e^-(.5 \text{ TeV})$
CLIC	$e^+e^-(3\text{ TeV})$
ENAL site	
10 km	

\n10 km

Fermilab Site - Scale of facility (D. Neuffer)

"Traditional" Muon Collider Principle

Steps:

- **(1) A proton driver provides high intensity (~ 4 MW) short pulse (~2 ns) proton beams on target, producing high flux pions**
- **(2) Pion quickly decays to muon and neutrino**
- **(3) Muon is unstable but has a relatively long mean lifetime** (2.2 μ s), which becomes longer at higher energy (\propto E/E_o). **Therefore, a series of beam manipulation is possible before it decays (capture, rotation, cooling, acceleration, storage and collision)**

Key Technology – Ionization Cooling

- Radiation cooling (for e+, e-), electron cooling (for pbar), stochastic cooling (for pbar) – all too slow for muons
- Ionization cooling appears feasible:
	- Particles passing through an absorber, losing momentum in three coordinates. RF acceleration restores the longitudinal momentum, while transverse momentum remain reduced.
	- This method cannot be applied to protons due to strong nuclear interaction
	- \bullet It cannot be applied to electron either due to strong beamstrahlung
	- \bullet But for muons this method is ideal:
		- Muons have no strong interaction
		- Muons have negligible beamstrahlung
		- Ionization cooling is fast

Description of Technical Systems (R. Palmer)

- 1) Proton driver: protons of high power (4 MW), high bunch intensity, short bunch length (2 ns)
- 2) Mercury jet target and capture solenoid (20 T, SC)
- 3) Chicane and Be proton absorber (to get rid of protons)
- 4) Phase rotation (to reduce energy spread by increase bunch length)
- 5) Charge separation (to form two beams: μ + and μ -)
- 6) 6D cooling the most critical stage, ionization cooling, using absorber (gas or liquid hydrogen, or lithium) and rf acceleration
- 7) Bunch merging (combining multiple bunches into a single bunch)
- 8) 6D cooling
- 9) 30-40 Tesla 4D cooling (final cooling, rf cavities inside a 3T solenoid) 10)Recombination
- 11)Acceleration (recirculating linac, or rapid cycling synchrotron, or FFAG) 12)Collider ring
- 13)Detectors

Muon Collider as Higgs Factory

s-channel Higgs production cross section in a muon collider is ~43,000 times larger than in an e +e collider

 $\sigma(\mu^t \mu \rightarrow H) \cong 43{,}000 \times \sigma(e^+e^- \rightarrow H)$

 σ (peak) = 70 pb, which should be compared to σ ($e^+e^- \rightarrow ZH$) = 0.2 pb

- This high cross section can compensate the low luminosity of muon collider
- Muon collider can measure the decay width Γ directly without any theoretical assumption (a unique advantage) – if the muon beam energy resolution is sufficiently high
- But the required energy resolution is very demanding

126 GeV $\mu^+\mu^-$ Collider (D. Neuffer)

8 GeV, 4MW Proton Source

15 Hz, 4 bunches 5×10^{13} /bunch

\triangleright π \rightarrow μ collection, bunching, cooling

 \triangleright $\epsilon_{\perp N}$ =400 π mm-mrad, $\epsilon_{\parallel N}$ = 2 π mm • 10^{12} μ / bunch

\triangleright Accelerate, Collider ring

- $\epsilon = 4$ MeV, C=300m
- **Detector**
- **EXECUTE:** monitor polarization precession
- **Fig. 5 For energy measurement**
	- $\delta E_{error} \rightarrow 0.1$ MeV

Muon Ionization Cooling Experiment (MICE)

Under construction

Linda Coney, UCR

Will test 10% 4D emittance reduction (0.1% accuracy)

Single particle experiment

http://www.mice.iit.edu/

Status of "Traditional" Muon Collider

- The idea was first proposed by A. Skrinsky et. al and D. Neuffer in early 1980s
- A first schematic design was presented by D. Neuffer and R. Palmer in 1990s
- A complete design of neutrino factory (a facility using the same technology but less demanding) was published in 2000
- An informal collaboration on neutrino factory and muon collider was formed in 2002
- A formal, US DOE initiated and funded Muon Accelerator Program (MAP) was formed in 2012
- However, upon a recommendation of P5, DOE terminated MAP in 2014 and redirected it to a general R&D
- DOE's support for MICE ended; MICE finished Step IV running in 2017 but will not continue.
- At this moment, "traditional" muon collider is put on the shelf without much activity

New Muon Collider Principle (M. Boscolo)

Steps:

- **(1) A high intensity high energy (45 GeV) e+ beam hits a thin target (0.01 radiation length), colliding with e- in the target** and producing a muon pair just above the threshold $(\sqrt{s} =$ **212 MeV), which has small emittance and small energy spread; therefore, no need for cooling**
- **(2) Muons can be accelerated and stored for collision.**

$$
\mid {\rm e}^{\scriptscriptstyle +}{\rm e}^{\scriptscriptstyle -}\!\rightarrow\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}
$$

Schematic of New Muon Collider (M. Boscolo)

Parameters (M. Boscolo)

Goal:

 ω T $\approx 10^{11} \mu/s$ Efficiency $\approx 10^{-7}$ (with Be 3mm) \rightarrow 10^{18} e⁺/s needed @T \rightarrow e⁺ stored beam with T

need the largest possible lifetime to minimize positron source rate

LHeC like e+ source required rate with lifetime(e+) \approx 250 turns [i.e. 25% momentum aperture] \rightarrow $n(\mu)/n(e^* source) \approx 10^{-5}$

(also 28 km foreseen to be studied as an option)

New vs "Traditional"

- **Advantage:**
	- No need for cooling

Disadvantage:

Much smaller cross section:

 σ (e⁺e⁻ → μ⁺μ⁻) < 1 μb about 3 orders of magnitude smaller than proton cross section (~mb)

Need much higher intensity of e⁺ beam

 $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

Status of New Muon Collider

- The idea was first proposed by M. Boscolo et. al at IPAC2017
- A collaboration team on Low Emittance Muon Accelerator has been formed
- Study is at an early stage
- Tests with e+ beam was recently performed at CERN
- Being actively pursued right now

Collider Principle

Two steps: (1) Inverse Compton Scattering (ICS) high energy (2) $\gamma \gamma \rightarrow H$ (bb, cc, $\tau \tau$, $\gamma \gamma$, e+e-)

Collider as Higgs Factory

Comparable to 240 GeV e+e- Z*H* **but only need 160 GeV**

Dependence of photon spectrum on polarization

Figure 1.3.1: Spectrum of the Compton scattered photons for different polarisations of the laser and electron beams.

$$
\omega_m = \frac{x}{x+1} E_0; \quad x \approx \frac{4E_0 \omega_0}{m^2 c^4} \simeq 15.3 \left[\frac{E_0}{\text{TeV}} \right] \left[\frac{\omega_0}{eV} \right],
$$

Various Proposals for Photon Collider

Key Technology – Laser

- Laser can provide very high peak power (TW or even PW), or very high energy (several MJ) at a very low frequency (one shot in several hours).
- But for $\gamma\gamma$ collider, the laser must have:
	- ◆ High average power (from hundreds watts to tens of kW)
	- \bullet High single pulse energy (J)
	- \bullet Short pulse length (ps)
	- \blacklozenge High repetition rate (tens Hz to kHz)

ICFA-ICUIL Collaboration

"Marriage": Steel meets Glass

1 FOREWORD...7 1.1 FROM THE INCOMING ICFA CHAIR..7 1.2 FROM THE ICUIL CHAIR...8 1.3 FROM THE EDITORS. **2 WHITE PAPER OF THE ICFA-ICUIL JOINT TASK FORCE – HIGH POWER LASER TECHNOLOGY FOR ACCELERATORS....** EXECUTIVE SUMMARY 2.1 LASER APPLICATIONS FOR FUTURE HIGH-ENERGY AND HIGH-INTENSITY ACCELERATORS 2.1.1 Introduction .. 13 2.1.2 One- to Ten-TeV e⁺e⁻ Colliders Based on Laser Plasma Acceleration 14 2.1.2.1 *Principles of the LPA .. 14* 2.1.2.2 *Experimental Progress on Laser-Plasma Accelerators................ 18* 2.1.2.3 *Design Considerations for Laser-Plasma Colliders..................... 18* 2.1.2.4 *Post-BELLA Laser-Plasma Accelerator Applications.................. 21* 2.1.3 Linear Colliders Based on Dielectric Laser Acceleration........................... 23 2.1.3.1 *Dielectric Laser Acceleration: Linear Collider Parameters......... 23* 2.1.3.2 *Challenges and Opportunities ... 26* 2.1.4 γγ Colliders... 27 **Example of LHeC.................... 32** 2.1.5.1 *Introduction .. 32* 2.1.5.2 *Example: The Large Hadron Electron Collider (LHeC) 32* 2.1.5.2.1 Electron Beam Requirement for LHeC (RR) 32 2.1.5.2.1 Electron Beam Requirement for LHeC (LR) 33 2.1.5.3 *Possibilities for a Laser-Plasma Linac and Issues....................... 33* 2.1.5.4 *Conclusion .. 34* 2.1.6 Perspectives on Laser Proton Acceleration to the TeV Range.................... 35 2.1.7 Laser Stripping of H– Particles in High-Intensity Proton Accelerators....... 36 2.1.7.1 *Laser Stripping of H– Particles for SNS....................................... 36* 2.1.7.2 *Laser Stripping of H– Particles for Project X............................... 39* 2.1.7.2.1 Direct Laser Ionization... 39 2.1.7.2.2 Three-Step Stripping .. 40 2.2 LASER APPLICATIONS FOR LIGHT SOURCES ... 40 2.2.1 Lasers for RF Accelerator-Based Light Sources.. 41 2.2.1.1 *Guns and Heaters.. 41* 2.2.1.2 *FEL Seeding.. 43* 2.2.1.3 *Lasers for Users.. 48* 2.2.2 Lasers for Laser Plasma Accelerator Driven FELs..................................... 49 2.2.3 Thomson Scattering Sources for X-ray and Gamma-ray Production 50

Contents

ILC-based $\gamma\gamma$ Collider

Laser Requirements

Need an optical cavity with Q \sim **300**

Multi-Pass Optics (from the DESY TESLA Design)

Pulse Stacking Laser Cavity for ILC (T. Takahashi)

•total length ~100m •power enhancement ~100

CLIC-based and X band-based $\gamma\gamma$ Collider

Laser Requirements

Livermore LIFE fusion project laser beam: 130 kW average power, 8100 J /pulse, 16 Hz (LIFE would have 384 such beams) 34 Such the state of $\frac{34}{4}$

The entire 1 ω beamline can be packaged into a box which is 31 $m³$ while providing 130 kW average power

Livermore fusion project LIFE will have 384 laser boxes One would be enough for $\gamma\gamma$ **collider**

LIFE

Nature Photonics (G, Mourou et al., v. 7, p. 258, April 2013)

Figure 2: Principle of a coherent amplifier network (CAN) based on fiber laser technology. An initial pulse from a seed laser (1) is stretched (2), and split into many fibre channels (3). Each channel is amplified in several stages, with the final stages producing pulses of \sim 1 mJ at a high repetition rate (4). All the channels are combined coherently, compressed (5) and focused (6) to produce a pulse with an energy of **>10 J** at a repetition rate of **10 kHz** (7). [5]

Example – How to build a $\gamma\gamma$ Collider

Two unique experiments:

- $\gamma \gamma \rightarrow \gamma \gamma$ scattering: predicted (Halpern) but never observed in the laboratory
- $\gamma\gamma \rightarrow e^+e^-$: predicted (Breit-Wheeler) but never observed in the laboratory

Collider Parameters (11/01/2018)

Event rate:

- $\gamma\gamma \rightarrow \gamma\gamma$: L = 1 x 10²⁷, σ = 3 $\mu b \Rightarrow$ several events per hour (30,000 events/ year) (*Comparable to the Higgs rate in CEPC, in which the luminosity is higher by 7 orders of magnitude, but cross section is smaller by 7 orders of magnitude*)
- $\gamma\gamma \rightarrow e^+e^-$: L = 1 x 10²⁷, σ = 100 mb \Rightarrow 100 events per second 39

Electron Linac for $\gamma\gamma$ **Collider**

1 sigma beam size of BEAM Line A (beam energy dispersion effect is not included)

1 sigma beam size of BEAM Line B (beam energy dispersion effect is not included)

W.B. Liu

Beta fuction and 1 sigma beam size near the IP.

16-piece Permanent Quadrupole (Y. Chen)

CAS, 22/02/2018, Zurich

Narrowband power amplifier

45

• Extracted energy :

W. Chou

Detector (Y. Huang, C. Zhang, J. Lu)

Detector dimension

- **Length =76cm**
- **Inner diameter = 40cm**
- **Thickness = 6cm**

PS detector

- **Attached in front and inner side of the crystal**
- **Thickness = 1cm .**
- **CsI crystal**
	- **46 Lines,**
	- **23 crystals per line**
	- **966 crystals**

Photon Spectrum

Unpolarized Electron Polarized Electron

Figure 1.3.1: Spectrum of the Compton scattered photons for different polarisations of the laser and electron beams.

Luminosity Calculation (code CAIN)

(T. Takahashi)

Detector Simulation (T. Takahashi, B.H. Sun)

- **Detection simulations design, resolution, efficiency, background** \bullet
- **Physics simulation** $\gamma \gamma \rightarrow \gamma \gamma$, $\gamma \gamma \rightarrow e^+e^-$, $\gamma e^- \rightarrow \gamma e^-$...
- **Shielding design and simulation beam Scattering, collimation design** \bullet **The study gets under way**

Detector Simulation (T. Takahashi, B.H. Sun)

$$
\gamma \gamma \rightarrow \gamma \gamma \quad \sqrt{s} = 1.41 MeV
$$

Back to back photons 0.0019 events/s

W. Chou CAS, 22/02/2018, Zurich 50

Detector Simulation (T. Takahashi, B.H. Sun)

$$
\gamma \gamma \to e^+ e^- \sqrt{s} = 1.41 MeV \implies p_{e^{\pm}} \approx 0.48 MeV
$$

Low momentum e⁺ e - not back to back 64 events/s

W. Chou CAS, 22/02/2018, Zurich 51

Challenges

• **Electron beam**:

- high charge (2 nC)
- low emittance (6 nm at 200 MeV)

• **Laser beam**:

- high average power (100 W)
- high repetition rate (50 Hz)
- high intensity (2 J)
- short pulse (1 ps)
- **FFS**:
	- small size, high gradient PMQ (600 T/m)
- **Detector**:
	- * to select $\gamma\gamma$ signal from e+e- signal
	- $*$ strong background from ey and e-e- collisions

• **Timing**:

- Jitter requirement: <100 fs
- between e-beam and laser
- between two laser beams

Status of $\gamma\gamma$ **Collider**

- \bullet High energy $\gamma\gamma$ collider for Higgs factory: There are a number of proposals. However, the timeline to construct a real one appears to be very long – it has to wait until a high energy e+e- collier is built (e.g., ILC, CLIC)
- Low energy $\gamma\gamma$ collider:

Being actively pursued in China, Italy and Japan (part of ELI-NP). The construction of at least one of them is likely to happen soon.

• Medium energy $\gamma\gamma$ collider:

If a low energy $\gamma\gamma$ collider is successfully built, a medium energy one may quickly follow suit, because it can use existing electron accelerators and also because there are a lot of interesting physics in several GeV range.

Summary

- Both muon collider and $\gamma\gamma$ collider were proposed in 1980s but have never been built because of technical difficulties.
- The "traditional" muon collider had been pursued for more than 20 years but the activity is stalled due to lack of technology breakthrough (e.g., how to solve the problem of RF breakdown in a strong magnetic field) and other reasons.
- A new idea about muon collider was recently proposed and appears to gain momentum, because it has no need for muon cooling. But it must find a solution for how to produce a high intensity e+ beam.
- From early on, $\gamma\gamma$ collider had been considered as an afterburner of a high energy linear collider and, thus, a remote possibility.
- However, interest in a low energy $\gamma\gamma$ collider together with today's advanced laser technology has changed the game plan. A first $\gamma\gamma$ collider can be built in just a few years.
- This field is very challenging and will attract young and talented people who love challenges.
- But this field also contains high risk. ROI (return on investment) is uncertain it could be enormous (success will crown you "world no. 1"), but it might also go nowhere.

