
Linear Collider Beam Dynamics

D. Schulte

Linear Collider Beam Dynamics, CAS 2018D. Schulte 1



Introduction
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Stepping Stones

• Beam parameters along the collider and system 
functionalities

• Power efficiency in the main linac

• Wakefields and single bunch energy spread

• Single bunch beam break-up

• Multi-bunch beam break-up

• Static imperfections

• Dynamic imperfections
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Overall Design and Parameters
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Main Linear Collider Overview

Need to reach energy and luminosity goal

Single pass in linac to reach energy

 Technology challenge

Single pass to reach luminosity

 Technology and beam dynamics
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PhysicsPower Power



ILC 
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Damping Rings Polarised electron 

source
Ring to Main Linac (RTML)

(including 

bunch compressors)

e- Main Linac

e+ Main Linac

Parameters Value

C.M.  Energy 500 GeV

Peak luminosity 1.8 x1034 cm-2s-1

Beam power 10.5 MW

Beam Rep. rate 5 Hz

E gradient 31.5 MV/m +/-20%

31km
E+ source
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CLIC (3 TeV)
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Drive Beam 
Generation 
Complex

Main Beam 
Generation 
Complex

Goal: Lepton energy frontier CLIC at 3TeV shown

Stages at Ecms=0.38, 1.5 and 3TeV 
L=6x1034cm-2s-1 at 3TeV

Beam power 30MW at 3TeV

50km



Examples of ILC and CLIC Main Parameters
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Parameter Symbol [unit] SLC ILC CLIC CLIC

Centre of mass energy Ecm [GeV] 92 500 380 3000

Luminosity L [1034cm-2s-1] 0.0003 1.8 1.5 6

Luminosity in peak L0.01 [1034cm-2s-1] 0.0003 1 0.9 2

Gradient G [MV/m] 20 31.5 72 100

Particles per bunch N [109] 37 20 5.2 3.72

Bunch length σz [μm] 1000 300 70 44

Collision beam size σx,y [nm/nm] 1700/600 474/5.9 143/2.9 40/1

Emittance εx,y [μm/nm] ~3/3000 10/35 0.95/30 0.66/20

Bunches per pulse nb 1 1312 352 312

Bunch distance Δz [mm] - 554 0.5 0.5

Repetition rate fr [Hz] 120 5 50 50
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Energy Drivers
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Energy is largely determined by main linac

Gradient in the accelerating structure or 
cavity
Key technology challenge

Length of the linacs
Cost of technology

Affordability of the project is key

 Erk Jensen, 
Thursday 1.3.

 Walter Wuensch, 
Sunday/Monday 4/5.3.



Luminosity Drivers
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Beam Quality
(+bunch length)

Can re-write normal 
luminosity formula

Luminosity
spectrum

Beam current

HD : pinch enhancement, typically 1-2
N : number of particles per bunch
nb : number of bunches per train
fr : number of trains per second
sx,y : transverse beamsizes



Beamstrahlung
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 Werner Herr
Monday 26.2.

Number of photons dominates L0.01/L
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Beam Parameters Along the Collider (CLIC 380)
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εx [nm] εy [nm] σz [μm] E [GeV]

Damping ring exit 700 5 1600 2.86

End of RTML 850 10 70 9.0

End of main linac 900 20 70 190.0

Interaction point 950 30 70 190.0



Beam Parameters Along the Collider (CLIC 380)
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Design limits

Δεy [nm]

Static 
imperfections 
Δεy [nm]

Dynamic
imperfections 
Δεy [nm]

Damping ring exit 5 0 0

End of RTML 1 2 2

End of main linac 0 5 5

Interaction point 0 5 5

sum 6 12 12



Main Linac
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• The key for higher energies

• The main cost driver
• Main power consumer

• A main ingredient for site choice

• The key design driver for other systems

PhysicsPower Power

Centre of this lecture

Note: 12 hours of main linac lecture in 
linear collider school only scratches the 
surface



Sources

Produce the electron beam

• use a laser to kick electrons out 
of a cathode
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 Masao Kuriki
Thursday 1.3.

Produce the positron beam

• use an electron beam to produce 
photons

– In CLIC in a crystal

– In ILC in a wiggler

• the photons produce showers in matter

– harvest the positrons



Damping Rings

Main limit for horizontal emittance and contributes to vertical emittance

Important single particle and collective beam dynamics
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 Katsunobu Oide
Monday 26.2., Tuesday 27.2.

 Hermann Schmickler
Friday 23.2. 

Cool the beams

• in particular positron beam

• make particles emit synchrotron 
radiation (bends and wigglers)

• and reaccelerate



Ring To Main Linac

Transports beam from damping ring to main linac

• Compresses bunches from damping ring to main linac (e.g. from 1.6 mm to 70 
μm in CLIC)

• Increase the beam energy to be high enough for transport and main linac

• Manipulate the spin
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 Frank Tecker
Saturday 24.2.



Beam Delivery System
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Final focus system: Telescope to squeeze the 
beam to small size
i.e. small beta-function

IP, i.e. focal pointFocusing lens
Actually a doublet of quadrupoles

f1f1 f2 f2

 Andrei Seryi
Sunday 4.3

Chromaticity is a problem
(similar to camera lens)

Correction with nonlinear elements,
but  has limited capabilities
 Have to limit beam energy spread



Main Linac and Energy
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ILC Accelerating Cavity
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• About 1 m long cavity with 31.5 MV/m,

- super-conducting

- 1.3 GHz

- standing wave

- constant impedance

 Erk Jensen,
Thursday 1.3.



Main Linac Unit
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Accelerating cavities
O(65%) of linac length

Accelerating cavitiesBeam guiding quadrupole
Beam position monitor
Corrector kicker

Total length for 500 GeV cms 31 km, some length for beam cleaning and focusing



Standing Wave Cavity

D. Schulte Linear Collider Beam Dynamics, CAS 2018 22

• The power is feed into one end

- the power is reflected at the coupler

- as the power in the cavity is increasing, the reflection is reduced

• there is a level when there is no reflection

⇒ now switch on the beam



Standing Wave Cavity
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Standing Wave Cavity

D. Schulte Linear Collider Beam Dynamics, CAS 2018 24



Filling a Standing-wave Cavity

D. Schulte Linear Collider Beam Dynamics, CAS 2018 25

Select the target gradient G0

Adjust the coupling of the cavity 
to the RF “external Q”

All the RF power flows into cavity

Only part of RF power 
flows into cavity

In ILC
Filling time is 900 μs
Beam time is 720 μs

 Erk Jensen,
Thursday 1.3.



Filling a Standing-wave Cavity
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Switch the beam on
Takes as much power from cavity as flows in
Gradient remains constant
All RF power continues to flow in



Filling a Standing-wave Cavity
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CLIC Accelerating Structure
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• About 23 cm long structure with G = 100 MV/m

- normal-conducting

- 12 GHz

- travelling wave

- constant gradient (almost)

 Walter Wuensch, 
Sunday/Monday 4/5.3.



CLIC Two-beam Concept

Future Collider Technologies, CERN 2017

100A drive beam
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Total instantaneous 
power of O(10TW)

100A drive 
beam

1
.
2
A 
m

2m



CLIC Two-beam Module
1st module 
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80 % filling with accelerating structures
11 km for 380 GeV cms
50 km for 3 TeV



CLIC: Drive Beam

Future Collider Technologies, CERN 2017D. Schulte 31

Drive Beam 
Generation 
Complex

Main Beam 
Generation 
Complex

50km

Drive Beam Accelerator
acceleration in fully loaded linac

Power Extraction

Drive Beam Decelerator Section (2  24 total)

Combiner 
Ring  3

Combiner Ring 
 4

Delay Loop  2
gap creation, pulse compression & 
frequency multiplication

RF Transverse 
Deflectors

 Steffen Doebert
Saturday 3.3.



Travelling Wave Structure
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• The power is feed into one end

- no reflection if designed properly

• It slowly moves through the structure

- group velocity is typically a few percent of the speed of light



Travelling Wave Structure
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Note: Field should also vary with position, but that exceeds my graphic competences



Filling a Travelling Wave Structure
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G

s

The RF energy is flowing along 
the structure

Some is given to the beam, 
some is lost in the wall

Gradient profile developes

Some power is leaking out at 
the end
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In CLIC filling time is O(80 ns) and beam time (O 160 ns)
Slightly different for different structures

G

s



Choice of Material

• The material is the most fundamental design choice

• Super-conducting structures

- allow a small beam current

• ⇒ low background per unit time in IP

• ⇒ intra-pulse feedback is possible everywhere

• Normal conducting structures

- allow for high gradient

• ⇒ high centre-of-mass energy

- need high beam current

• ⇒ significant wakefield effects

- use short pulses

• ⇒ smaller damping ring
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Efficiency
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RF Power to Beam Efficiency

D. Schulte Linear Collider Beam Dynamics, CAS 2018 38

For constant RF pulse power

Note: what I call τf ill  contains several components of which the fill time is the most

important; RF experts will learn more

Power into beam
During beam passage

RF power during pulse

Simplified



RF to Beam Power Efficiency
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• In a super-conducting cavity

- little RF power is lost in the walls during the pulse

- but the cooling requires some significant overhead

- some cooling is also needed against heating from the environnement

• In normal conducting structures

- A significant fraction of the RF power is lost into the walls

- some power will be draining out of the travelling wave structure (usually)



Impedance
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Energy in the cavity or 
accelerating cell

Voltage along cavity 
or cell

Impedance, depends on shape 
of cavity/cell, does not 
depend on frequency

RF frequency

High R/Q means high wakefields
A bunch extracts the same amount of energy for higher R/Q
But field in cavity must change more since less energy is stored

Important example: smaller apertures yield higher R/Q 



Impedance
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Energy in the cavity or 
accelerating cell

Voltage along cavity 
or cell

Impedance, depends on shape 
of cavity/cell, does not 
depend on frequency

RF frequency

High R/Q means high wakefields
A bunch extracts the same amount of energy for higher R/Q
But field in cavity must change more since less energy is stored

Important example: smaller apertures yield higher R/Q 

Warning

This definition is in “Linac Ohms”

People also use “Circuit Ohms”

2 “Linac Ohms” = 1 “Circuit Ohm”



Power Lost in the Structure
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Examples: Q=O(1010) for superconducting and O(104) for normal conducting

But frequency dependent

Power loss

Voltage

Cavity design Cavity material



Examples
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Cryogenics Power (ILC)

   

Pcryo =
1

h

Troom -Tsource
Tsource

´ Ploss

Pcryo » 700 ´ Ploss

Cavities have small losses

About 1W/m

But cooling costly at low 
temperatures

Remember Carnot:

   

Ploss µ
1

Q0

G2

   

Ploss = const
1

Q0

´G2
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The typical heat load of 1 W/m
 about 1 kW/m for cryogenics
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Average RF power: 1.6kW/m (3kW/m)
Power into beam about 0.7kW/m 



ILC Main Linac Pulse Optimisation
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More RF peak power

Longer RF pulses

Disclaimer: there have 
been heated discussions 
on how that should be 
optimised…

Higher beam current
Shorter cavity fill time
Higher cost (klystrons and modulators)
Either higher bunch charge or more bunches

Higher average beam current
Cavity fill time is smaller fraction of pulse
Higher cost (modulators and klystrons)
More cooling required
Either higher bunch charge or more bunches

Higher bunch charge makes beam dynamics more challenging
More bunches makes damping ring more challenging

Higher pulse rate
Higher average beam current
Higher cost (modulators and klystrons)
More cooling required
Faster damping in damping rings



CLIC Main Linac Pulse Optimisation
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Power lost in 
structure

Power to beam

Maximise

Low gradient make 
machine expensive

R’ is impacts 
beam stability

Maximise current as R’ allows

Maximise bunch charge
Minimise distance between bunches
Got to the limit!



Beam Quality
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Note: CLIC Optimisation
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Scan 1.7 billion cases:

Fix structure design parameters: a1,a2,d1,d2,Nc,f,G

Determine main linac beam parameters

Calculate luminosity (including performance of 
other systems)

Calculate cost and power 

Chose best case

Simplified	Parameter	Diagram	

Drive	Beam	Genera on	Complex	
Pklystron,	Nklystron,	LDBA,	…	

Main	Beam	Genera on	Complex	
Pklystron,	…	

Two-Beam	Accelera on	Complex	
Lmodule,	Δstructure,	…	

Idrive	
Edrive	
τRF	
Nsector	
Ncombine	

fr	

N	

nb	
ncycle	
E0	
fr	

Parameter	Rou ne	
Luminosity,	RF+beam	constraints	
Lstructure,	f,	a1,	a2,	d1,	d2,	G	

Ecms,	G,	Lstructure	

D.	Schulte,	CLIC	Rebaselining	Progress,	February	2014	

CERN-2016-004



Note: Coordinate System
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• We use two frames, the laboratory frame and the beam frame

• The nominal direction of motion of the beam is called s in the laboratory frame,  

the beam moves toward increasing s

• The longitudinal direction is called z in the beam frame, with particles at smaller 

z moving  ahead of particles with larger z

• A particle preserves its longitudinal position within the beam

• The transverse dimensions are x in the horizontal and y in the vertical plane, in 

both coordinate systems

• People use different systems so find out what they talk about



Emittance

D. Schulte Linear Collider Beam Dynamics, CAS 2018 50

The beam particles have different coordinates; they occupy some phase space

Liouville theorem (from the Liouville equation): the  density  in  phase  space around  a  
trajectory  remains  constant  in  an  unperturbed system, i.e. “the phase space is preserved”

Particle coordinates at one location

Particle coordinates at other location

Area does not change



Emittance and Acceleration
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When accelerating the phase space 
remains constant in canonical 
coordinates

But with the definition used in 
accelerators emittance shrinks

To avoid this linac experts use normalised emittance εN=γε that does not change
I will always do that here but not use the index N

Example: E(s2) = 5 E(s1)



Emittance Definition
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Use projected emittance



Offset
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If the beam jitters luminosity is lost

If the beam emittance grows due to decoherence, the luminosity loss remains the same
(on average)

Decoherence/emittance growth means:

This luminosity loss cannot be corrected downstream 



Single Bunch Energy Spread
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Wakefields

Particle leaves fields behind that 
affect subsequent particles:
“Wakefields”

Linear Collider Beam Dynamics, CAS 2018

Dtb

D. Schulte 55

Use wakefields to describe the effect of first 
particle on second one, here relevant are

Charge of driving particle

Longitudinal/transverse wakefield

Structure length

Witness particle charge 

Transverse offset



Longitudinal Wakefield and Energy
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Z = time

Picture 1:
Bunch 
extracts 
energy

Picture 2: 
Bunch 
induces 
field

Consider only the fundamental mode in the structure

The field is always the same
The extracted energy is automatically correct

If a bunch extracts a large fraction of the energy in 
the structure the tail will gain much less energy



Longitudinal Wakefield (CLIC)
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The particle does not change z-
position
 Sees the same wakefield in each 
accelerating structure

Many high-frequency modes are excited
They add because they are cosine-like
But they decohere rapidly



Longitudinal Wakefields and Energy Spread
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Loaded gradient seen by a single bunch for 
on-crest acceleration:
more than 2% full gradient spread
 0.7% RMS energy spread

Loaded gradient seen by a single bunch for 
off-crest acceleration (12°):
 1% full gradient spread
 0.35% RMS gradient spread
Loose about 2% in gradient

1.3 MV/m

1.3 MV/m1.5 MV/m



Note: Energy Spread along Linac
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Can chose different RF phases along the linac
• Small phase in the main part
• and 30° at the end
• To have average phase of 12°

Allows to have larger energy spread in the main 
part of the linac than at the end

This can help beam stability
 See next section



Single-bunch Stability
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Lattice Concept

Guiding quadrupoles
act like a spring
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Particle is comparable to 
harmonic oscillator
(driven with wakes)

FODO lattice is used in 
main linacs

CERN summer student lectures, 2014

A function of longitudinal position s
But equivalent to time dependence t

Local wavelength is β
Strong focusing means smaller β



ILC Lattice Design
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Constant quadrupole spacing
Constant phase advance

Different phase advance in horizontal 
and vertical to decouple planes against 
wakefield effects



CLIC Lattice Design (3 TeV)
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• Use strong focusing (small ) to 
stabilise beam

- 10% of linac are quadrupoles

• Used ∝ E1/2,  = const

- Quadrupole spacing and length 

scale as E1/2

⇒ roughly constant fill factor

- phase  advance is chosen to 

balance between wakefield 

and   ground motion effects

• Total length 20867.6m

- fill factor 78.6%
• 12 different sectors used

• Matching between sectors using 7 quadrupoles to 

allow for some energy bandwidth

Note: fill factor = active length/total length



Passage Through the Linac
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For simplicity consider constant beta-function
Replacing FODO lattice with permanent focusing
Great approximation to understand physics 

Solution is well-known



Transverse Wakefields
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For short distances the wake-field 

rises linear

Summation of an infinite number 

of sine-like modes with different 

frequencies

Coherent offset of bunch (worst

case)

The tail is deflected to the outside



Emittance in Linac
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Transverse stability of beam 
with initial offset sy

• No energy spread
• Emittance with respect to 

beam axis shown

 Acceptable for ILC
 Not acceptable for CLIC

ILC

CLIC



Bunch Transverse Motion (CLIC)
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Direction of motion

Head performs simple 
betatron oscillation

Tail starts to flap 
around

Slices will shrink 
due to energy 
increase



Wakefield Model
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Assume bunch can be represented by two particles and constant K(s) = 1/b2

- Second particle is kicked by transverse wakefield

Solution is simple with an ansatz

⇒ Amplitude of second particle oscillation is growing linearly with s



Discussion
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• Factors for the amplitude growth of the second particle

- β: small beta-function (strong focusing) helps

- 1/E: high energy helps

- W⊥: small wakefield helps

- Shorter bunches

- N : small bunch charge helps

- s: shorter linac helps (i.e. higher gradient G)

With proper calculation one finds



Discussion

D. Schulte Linear Collider Beam Dynamics, CAS 2018 70



BNS Damping Concept
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structure quad

Transverse  wakes  act  as 

defocusing force on tail

⇒ beam  jitter  is  exponentially 

amplified

BNS damping (Balakin, 

Novokhatsky and Smirnov) 

prevents this growth

- manipulate  RF  phases to 

have energy spread

- take spread out at end



BNS Damping
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For simplicity assume initial offset but no angle

First particle performs a harmonic oscillation

We want the second particle to perform the same oscillation, i.e.

Change particle energy for this purpose

Same as changing mass in 
harmonic oscillator



BNS Damping
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Plugging in our wanted solution for x2(s)

we find



BNS Damping
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which is fulfilled for

CLIC choice

Allows

Small beta-function

Small wakefields

Small bunch charge



Bunch in Main Linac
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Direction of motion

Head still performs simple 
betatron oscillation

Tail still flaps a 
little bit

Centre of bunch 
is much more 
stable



Energy Spread in the Linac
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Cannot exactly match energy profile 
and wakefield
 Shapes of energy spread and

integrated wake differ

Only cure coherent offset
 Slope along bunch still has an 

effect

Energy spread also helps detuning

In summary
 Can only obtain some correction
 Broad acceptable range
 Different RF phases in linac are 

OK



Multi-bunch Stability
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Multi-bunch Wakefields
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• Long-range transverse wakefield 
determines how close one can 
put the bunches in the linac 

• Longrange transverse wakefields 
are sine-like

• They can be reduced by

• Damping

• Detuning



Damping
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• Damping = extract power of transverse 

modes

• In CLIC, each cell has waveguides

- Fundamental mode cannot escape

- Strong damping, Q=O(10)

• ILC has antennas at the end

- Weaker damping, Q=O(104)



Effect of Damping
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Detuning
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Introducing a spread in wakefield frequencies helps:

Example for two modes

In CLIC structure each cell is different, has a different transverse mode



Illustration of Detuning
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Combined Effect
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Multi-bunch Effect in CLIC
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Wakefield amplitudes are large

Strong damping (Q=O(10))

Detuning (each cell is different)

Each bunch mainly kicks the 

immediately following one

Target field

Analytic estimate: point-like bunches
Using model similar to two-particle model but for many
https://cds.cern.ch/record/1227215/files/fr5rfp055.pdf

Luminosity loss is amplified by factor 4.9, acceptable

Fully real simulation:
Energy spread stabilises, very acceptable

https://cds.cern.ch/record/1227215/files/fr5rfp055.pdf


Multi-bunch effect in ILC
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Small wakefield amplitudes
• little damping (Q=O(104))
• random detuning cavity to cavity 
(O(10-3))

Cavity misalignment simulated

No detuning is not acceptable

Residual bunch-to-bunch offsets with detuning
But should be acceptable



Imperfections
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Static Imperfections

D. Schulte Linear Collider Beam Dynamics, CAS 2018 87

• Pre-alignment errors are most important

• Pre-Alignment imperfections can be roughly categorised into short-distance and 

long- distance errors

• To first order, the imperfections can be treated as independent

- as long as a linear main linac model is sufficient

• The short-distance misalignments give largest emittance contribution

- misalignment of elements is largely independent

- simulated by scattering elements around a straight line

- or slightly more complex local model

• The long-distance misalignments are dominated by the wire system

⇒ ignore short-distance misalignments and simulate wire errors only

• Combined studies are mainly for completeness



CLIC Pre-alignment Procedures
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• Test of prototype shows
• vertical RMS error of 11μm
• i.e. accuracy is approx. 13.5μm

• Improvement path identified

• Required accuracy of reference 
points is 10μm

 Dominique Missiaen
Monday 5.3



Pre-alignment Performance
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Element error with respect to alignment
ILC CLIC

Structure 

Structure 

Girder Girder 

Quadrupole 

Quadrupole 

BPM

BPM

Wakefield mon.

offset 

tilts 

offset 

tilt 

offset 

roll 

offset

resolution 

offset

Girder

Girder

survey line 

survey line

girder/survey line 

survey line

girder/survey line 

BPM

center wake center

300 µm

300 µradian

200 µm

20 µradian

300 µm

300 µradian

300 µm

≈ 1 µm

—

5 µm 

200(∗) µm

9.4 µm
9.4 µradian 

17 µm

≤ 100 µradian

14 µm
0.1 µm

3.5 µm

Difficult to pre-align components in superconducting module

Important R&D development has been carried out for CLIC

* This is mainly bookshelfing



Emittance Growth (ILC)
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Error with respect to value ∆ey [nm]
Cavity offset module 300 µm 3.5

Cavity tilt module 300 µradian 2600
BPM offset module 300 µm 0

Quadrupole offset module 300 µm 700000
Quadrupole roll module 300 µradian 2.2
Module offset perfect line 200 µm 250000

Module tilt perfect line 20 µradian 880

Largest problem 
quadrupole
offsets

Module offset 
offsets 
quadrupole

Cavity tilts are important
Beam is kicked by accelerating field

Module angles lead to cavity tilts



Dispersion and Emittance Growth

D. Schulte Linear Collider Beam Dynamics, CAS 2018 91

Oscillation of a particle with nominal energy

Here a kick is applied,
e.g. a quadrupole with an offset



Dispersion and Emittance Growth
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Oscillation of a particle with 100.5 % of nominal energy

Oscillation of a particle with 
99.5% of nominal energy

Amplitude is almost the same
But slight dephasing is developing



Dispersion and Emittance Growth
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Difference between 
trajectories grows along 
accelerator 



Dispersion and Emittance Growth
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Difference between 
trajectories grows along 
accelerator 

Emittance grows as

For long linacs

Decoherence Initial kick



Beam-based Alignment and Tuning
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• Make beam pass linac by aligning quadrupoles
• one-to-one correction

• Remove dispersion by aligning BPMs and quadrupoles
• dispersion free steering
• Ballistic alignment
• kick minimisation

• Remove wakefields locally (CLIC only)
• RF alignment

• Remove dispersive and wakefield effects globally
• Emittance tuning bumps
• Luminosity tuning bumps



Trajectory with Simple Correction
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BPM readings if no beam-based 
correction is applied

After one-to-one correction all 
BPMs read zero

But beam still is offset, because 
BPMs have offsets



Trajectory at the End of the Linac
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With no correction, at the end of 
the linac beam performs betatron
oscillation

After one-to-one correction all 
BPMs read zero

No betatron oscillation has been 
build-up if we use one-to-one 
correction



Emittance Growth

D. Schulte Linear Collider Beam Dynamics, CAS 2018 98

The emittance growth with no 
correction is very large

The simple steering yields many 
orders of magnitude improvement

But still the emittance growth is far 
above the target



Dispersion and Emittance Growth
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Fix mean trajectory for next 
BPMs

The difference remains 
limited

BPM with offset causes kick



Dispersion and Emittance Growth
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Fix mean trajectory for next 
BPMs

The difference remains 
limited

BPM with offset causes kick



Example: BPM Misalignment in CLIC 380 GeV
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Larger energy spread 
makes us more sensitive to 
BPM misalignments

Values for 0.4μm scatter 
and one-to-one correction 
are shown

About 6 times less 
emittance growth than in 
CLIC at 3TeV



Emittance Growth after One-to-one Steering (ILC)
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Error with respect to value ∆ey [nm] ∆ey,121 [nm]
Cavity offset module 300 µm 3.5 0.2

Cavity tilt module 300 µradian 2600 < 0.1
BPM offset module 300 µm 0 360

Quadrupole offset module 300 µm 700000 0
Quadrupole roll module 300 µradian 2.2 2.2
Module offset perfect line 200 µm 250000 155

Module tilt perfect line 20 µradian 880 1.7

Quadrupole issue solved

BPM issue created
Module offset leads to BPM offset

Still much better than before

Note:
Emittance should scale as

✓



Dispersion Free Steering
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• Basic idea: use different beam energies

• Accelerate beams with different gradient and initial energy

• Optimise trajectories for different energies together

Minimise trajectory of 
nominal beam in BPMS Minimise difference of 

trajectories between beams 

More weight on this

weights

Beam offsets in BPM



Dispersion Free Illustration
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Offset BPM produces bump

Off-energy beam has 
different bump

DFS finds new 
solution with smaller 
bump

Adjust BPM reference to be 
on new trajectory



Dispersion Free Steering BPM Readings 
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A beam that has a different energy 
has a bad trajectory

The cancellation of different 
corrector kicks does not work very 
well because the phase advance is 
different for different energies

After dispersion free steering both 
beams take almost the same path



At the Beginning of the Linac

D. Schulte Linear Collider Beam Dynamics, CAS 2018 106

A small difference in trajectories starts 
between the two beams

The dispersion free steering almost 
completely removes this difference



Resulting Emittance Growth (ILC)
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Error with respect
to

value ∆ey [nm] ∆ey,121 [nm] ∆ey,dfs [nm]

Cavity offset module 300 µm 3.5 0.2 0.2(0.2)
Cavity tilt module 300 µradian 2600 < 0.1 1.8(8)

BPM offset module 300 µm 0 360 4(2)
Quadrupole offset module 300 µm 700000 0 0(0)

Quadrupole roll module 300 µradian 2.2 2.2 2.2(2.2)
Module offset perfect line 200 µm 250000 155 2(1.2)

Module tilt perfect line 20 µradian 880 1.7 —

Dispersion free steering largely cures the BPM offset issue



RF Structure Alignment
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Structures are scattered on the girder
 Wakefield kick

Measure beam offset with wakefield monitor
Move girder to remove mean offset
 No net wakefield kick

Limit mainly from
• accuracy of wakefield monitors (3.5 μm)
• reproducibility of wakefield
• tiny variation of betatron phase along girder



Example: Structure Misalignment in CLIC 380 GeV
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Average emittance
growth in CDR for 3TeV is 
Δε=0.54nm

So gain about a factor 2



Final Emittance Growth (CLIC)
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imperfection with respect to symbol value emitt. growth
BPM offset wire reference σBPM 14 µm 0.367 nm

BPM resolution σres 0.1 µm 0.04 nm
accelerating structure offset girder axis σ4 10 µm 0.03 nm

accelerating structure tilt girder axis σt 200 µradian 0.38 nm
articulation point offset wire reference σ5 12 µm 0.1 nm

girder end point articulation point σ6 5 µm 0.02 nm
wake monitor structure centre σ7 3.5 µm 0.54 nm

quadrupole roll longitudinal axis σr 100 µradian ≈ 0.12 nm

Goal: less than 10% above 15 nm
✓

Further improvement using 
tuning bumps



Tuning Bumps
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Compensate an effect globally

Minimise beam size/emittance
or maximise luminosity

Remove a correlation between particles
e.g. average wakefield kick can be 
compensated in one location

Energy spread and phase advance give limits
Shape due to wakefields

Apply wakefield kick to 
make bunch straight again



Simple Wakefield Model
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Wakefield kick from offset structure
First particle is not kicked
Second starts and oscillation



Simple Wakefield Bump Model
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Wakefield kick from offset structure
First particle is not kicked
Second starts and oscillation

Second wakefield kick from offset
Happens to compensate kick from 
first one



Some Old Example for ILC
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CLIC Beam-Based Alignment Tests at FACET
Dispersion-free Steering (DFS) proof of principle – March 2013

Before correction After 3 iterations

Incoming 
oscillation/dispersion is 
taken out and flattened; 
emittance in LI11 and 
emittance growth 
significantly reduced. 

After 1 iteration

Beam profile measurement
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DFS correction applied to 500 meters of the SLC linac
• SysID algorithms for model reconstruction
• DFS correction with GUI
• Emittance growth

is measured

Graphic User Interface:

A. Latina,
J. Pfingstner,
E. Adli,
D. Schulte
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Note: Choice of Weights
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Note: Emittance Along the Linac
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Note: Emittance and Wavelength



Dynamic Imperfections
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Dynamic Imperfections
Many sources exist, e.g.
• Ground motion
• Cooling water induced mechanical element vibration
• RF amplitude and phase jitter
• Magnet field jitter
• External magnetic field jitter
• …

They can compromise the luminosity
• Direct loss (trajectory jitter, emittance growth)
• Luminosity fluctuations can impact tuning
• Trajectory jitter can impact beam-based alignment

Need to mitigate them
• Beam-based feedback
• Stable hardware
• Specific systems

Need to consider the machine as a whole 
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Feedback Design
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Can use local feedback (fix trajectory in one place)
• But does not fix emittance growth
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Several trajectory feedback points help
But lead to overcorrection if independent

Can use MIMO (Multiple Input Multiple Output)
• Take all information and correct globally



Feedback Design and Speed
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Local feedback within a pulse
• Marginal for CLIC (e.g. beam-beam feedback)
• Possible for ILC, but bunch-to-bunch noise will be amplified along the machine
(Very) Few loops

MIMO feedback within one beam pulse
• Need to communicate along machine, limited by speed of light
• Impossible for CLIC (170 ns beam pulse)
• Marginal for ILC (720 μs beam pulse, 60 μs roundtrip for linac)
 Not really used

MIMO from pulse to pulse
• Possible in both machines
 Important basis of the feedback systems, e.g. trajectory feedback
 But cannot correct faster than 20 μs (CLIC) and 200 μs (ILC)

 Use additional feedback systems, independent of the beam



CLIC Beam-beam Feedback System
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CLIC
ILCStrong deflection allows to easily 

measure and correct offset

In CLIC an offset Dy = 0.1sy = 0.1nm
 3m downstream of IP 40mm beam 

offset

Get great signals for the BPMs

FONT system (Oxford): 13 ns



Example: Ground Motion
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In CLIC can reduce dynamic effects at frequencies lower than a few Hz

In ILC can use a bunch-bunch feedback system
• But be careful, bunch-to-bunch noise will be amplified
• e.g. the damping ring extraction kicker kicks each bunch separately, so it will induce noise 

 Andrei Seryi
Friday 2.3.



Example Issue: Ground Motion at CLIC
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J. Pfingstner
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Resulting Beam Jitter
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J. Pfingstner
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Beams at Collision
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J. Pfingstner
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Stabilisation System
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K. Artoos et al.

J. Snuverink, et al.
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Impact of Stabilisation on Beam

Linear Collider Beam Dynamics, CAS 2018

J. Pfingstner
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Beam at Collision
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J. Pfingstner
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Beam at Collision
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J. Pfingstner
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Active Stabilisation Results

B10

No stab. 53%/68%

Current stab. 108%/13%

Future stab. 118%/3%

Luminosity achieved/lost
[%]

Machine model
Beam-based feedback

Code

Close to/better 
than target
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Note: The Banana Effect

a) Wakefields+dispersion can create 
banana-shaped bunch in main linac

b) Do not model with projected emittance

c) The correct shape should be used

For large disruption (ILC) 
banana can reduce 
luminosity

Study done for TESLA
Similar disruption as ILC
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Conclusion
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Reserve
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Note: Choice of RF Phase
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Examples of beams with the same
transverse wakefield effects
i.e. larger N means shorter bunch

17% more charge requires 20°
6% gradient loss
More sensitive to phase jitter

CLIC bunch at 380 GeV
Running at 12°
2% gradient loss

12° is a good compromise


