Low Level RF challenges / Timing systems

A. Gallo
INFN
Lab. Nazionali Frascati

Lecture Outline

- **MOTIVATIONS**
 - Why accelerators need synchronization, and at what precision level

- **DEFINITIONS AND BASICS**
 - Synchronization, Master Oscillator, Drift vs. Jitter
 - Fourier and Laplace Transforms, Random processes, Phase noise in Oscillators
 - Phase detectors, Phase Locked Loops

- **SYNCRONIZATION ARCHITECTURE AND PERFORMANCES**
 - Phase lock of synchronization clients (RF systems, Lasers, Diagnostics, ...)
 - Residual absolute and relative phase jitter
 - Reference distribution – actively stabilized links

- **BEAM ARRIVAL TIME FLUCTUATIONS**
 - Bunch arrival time measurement techniques
 - Bunch arrival time downstream magnetic compressors
 - Beam synchronization – general case

CONCLUSIONS AND REFERENCES
Every accelerator is built to produce some **specific physical process**.

One *necessary condition* for an efficient and stable machine operation is that *some events have to happen at the same time* (simultaneously for an observer in the laboratory frame) or in a *rigidly defined temporal sequence*, within a maximum allowed time error.

If the *simultaneity* or the time separation of the events fluctuates beyond the specifications, the *performances of the machine are spoiled*, and the quantity and quality of the accelerator products are compromised.

Clearly, the tolerances on the time fluctuations are different for different kind of accelerators. The *smaller the tolerances*, the *tighter the level of synchronization required*. In the last decade a new generation of accelerator projects such as FEL radiation sources or plasma wave based boosters has pushed the level of the synchronization specifications down to the fs scale.
Free Electro Laser machines had a crucial role in pushing the accelerator synchronization requirements and techniques to a new frontier in the last ≈15 years. The simplest FEL regime, the SASE (Self-Amplified Spontaneous Emission), requires high-brightness bunches, being:

\[B = \frac{I_{\text{bunch}}}{\epsilon_L} \]

Large peak currents \(I_{\text{bunch}} \) are typically obtained by short laser pulses illuminating a photo-cathode embedded in an RF Gun accelerating structure, and furtherly increased with bunch compression techniques.

Small transverse emittances \(\epsilon_L \) can be obtained with tight control of the global machine WP, including amplitude and phase of the RF fields, magnetic focusing, laser arrival time, ...

Global Synchronization requirements: < 500 fs rms

In a simple SASE configuration the micro-bunching process, which is the base of the FEL radiation production, starts from noise. Characteristics such as radiation intensity and envelope profile can vary considerably from shot to shot.

A better control of the radiation properties resulting in more uniform and reproducible shot to shot pulse characteristics can be achieved in the “seeded” FEL configuration.

To “trigger” and guide the avalanche process generating the exponentially-growing radiation intensity, the high brightness bunch is made to interact with a VUV short and intense pulse obtained by HHG (High Harmonic Generation) in gas driven by an IR pulse generated by a dedicated high power laser system (typically TiSa). The presence of the external radiation since the beginning of the micro-bunching process inside the magnetic undulators seeds and drives the FEL radiation growth in a steady, repeatable configuration. The electron bunch and the VUV pulse, both very short, must constantly overlap in space and time shot to shot.

Synchronization requirements (e- bunch vs TiSa IR pulse): < 100 fs rms
Pump-probe technique is widely requested and applied by user experimentalists. Physical / chemical processes are initialized by ultra-short laser pulses, then the system status is probed by FEL radiation. The dynamics of the process under study is captured and stored in a “snapshots” record. Pump laser and FEL pulses need to be synchronized at level of the time-resolution required by the experiments (down to ~10 fs).

The relative delay between pump and probe pulses needs to be finely and precisely scanned with proper time-resolution.

Synchronization requirements (FEL vs Pump Laser pulses):

≈ 10 fs rms

Plasma acceleration is the new frontier in accelerator physics, to overcome the gradient limits of the RF technology in the way to compact, high energy machines. Wakefield Laser-Plasma Acceleration (WLPA) is a technique using an extremely intense laser pulse on a gas jet to generate a plasma wave with large accelerating gradients (many GV/m).

To produce good quality beams external bunches have to be injected in the plasma wave. The “accelerating buckets” in the plasma wave are typically few 100 μm long. The injected bunches have to be very short to limit the energy spread after acceleration, and ideally need to be injected constantly in the same position of the plasma wave to avoid shot-to-shot energy fluctuations. This requires synchronization at the level of a small fraction of the plasma wave period.

Synchronization requirements (external bunch vs laser pulse):

< 10 fs rms
SUMMARY

- **Circular colliders**
- **SASE FELs**
- **Future Linear colliders**
- **Seeded FELs**
- **FELs**
- **Pump-Probe**
- **WLPA External injection**
- **Upcoming ...**
- **Low-level RF, beam FBKs, ...**
- **LLRF systems, beam FBKs, ...**
- **Seeding and PC lasers, LLRF, ...**
- **FEL (*), Pump laser, ...**
- **Photocathode (PC) laser, LLRF, ...**
- **Interaction laser**

(†) depends on all RF and laser systems of the injector
(*†) depends on beam (LLRFs + PC laser) and laser seed (if any)

GLOSSARY
Every accelerator is built to produce some specific physical processes (shots of bullet particles, nuclear and sub-nuclear reactions, synchrotron radiation, FEL radiation, Compton photons, ...).

It turns out that a necessary condition for an efficient and reproducible event production is the relative temporal alignment of all the accelerator sub-systems impacting the beam longitudinal phase-space and time-of-arrival (such as RF fields, PC laser system, ...), and of the beam bunches with any other system they have to interact with during and after the acceleration (such as RF fields, seeding lasers, pump lasers, interaction lasers, ...).

The synchronization system is the complex including all the hardware, the feedback processes and the control algorithms required to keep time-aligned the beam bunches and all the machine critical sub-systems within the facility specifications.

Naive approach: can each sub-system be synchronized to a local high-stability clock to have a good global synchronization of the whole facility?

Best optical clocks ⇒ Δω/ω ≈ 10^{-18} ⇒ ΔT/T ≈ 10^{-18} ⇒ T ≈ 10 fs/10^{-18} ≈ 3 hours !!!

It is impossible to preserve a tight phase relation over long time scales even with the state-of-the-art technology.

All sub-systems need to be continuously re-synchronized by a common master clock that has to be distributed to the all "clients" spread over the facility with a star network architecture.
Once the local oscillators have been locked to the reference, they can be shifted in time by means of delay lines of various types – translation stages with mirrors for lasers, trombone-lines or electrical phase shifters for RF signals. This allows setting, correcting, optimizing and changing the working point of the facility synchronization.

Delay lines can be placed either downstream the oscillators or on the reference signal on its path to the client oscillator. The function accomplished is exactly the same.

For simplicity, in most of the following sketches the presence of the delay line will be omitted.

The Master Oscillator of a facility based on particle accelerators is typically a good(*), low phase noise μ-wave generator acting as timing reference for the machine sub-systems. It is often indicated as the RMO (RF Master Oscillator).

The timing reference signal can be distributed straightforwardly as a pure sine-wave voltage through coaxial cables, or firstly encoded in the repetition rate of a pulsed (mode-locked) laser (or sometimes in the amplitude modulation of a CW laser), and then distributed through optical-fiber links.

Optical fibers provide less signal attenuation and larger bandwidths, so optical technology is definitely preferred for synchronization reference distribution, at least for large facilities.

(*) the role of the phase purity of the reference will be discussed later.
Optical: mode-locked lasers

A mode-locked laser consists in an optical cavity hosting an active (amplifying) medium capable of sustaining a large number of longitudinal modes with frequencies $\nu_k = k\nu_0 = k/c/L$ within the bandwidth of the active medium, being L the cavity round trip length and k integer. If the modes are forced to oscillate in phase and the medium emission BW is wide enough, a very short pulse (≈ 100 fs) travels forth and back in the cavity and a sample is coupled out through a leaking mirror.

GLOSSARY:

OPTICAL MASTER OSCILLATOR

The boundary between the 2 categories is somehow arbitrary. For instance, synchronization errors due to mechanical vibrations can be classified in either category:

Jitter = fast variations, caused by inherent residual lack of coherency between oscillators, even if they are locked at the best;
Drift = slow variations, mainly caused by modifications of the environment conditions, such as temperature (primarily) but also humidity, materials and components aging, ...

The boundary between the 2 categories is somehow arbitrary. For instance, synchronization errors due to mechanical vibrations can be classified in either category:

Acoustic waves \rightarrow Jitter
Infrasounds \rightarrow Drift

For pulsed accelerators, where the beam is produced in the form of a sequence of bunch trains with a certain repetition rate (10 Hz ÷ 120 Hz typically), the rep. rate value itself can be taken as a reasonable definition of the boundary between jitters and drifts.

In this respect, drifts are phenomena significantly slower than rep. rate and will produce effects on the beam that can be monitored and corrected pulse-to-pulse.

On the contrary, jitters are faster than rep. rate and will result in a pulse-to-pulse chaotic scatter of the beam characteristics that has to be minimized but that can not be actively corrected.
Tasks of a Synchronization system:

- Generate and transport the reference signal to any client local position with constant delay and minimal drifts;
- Lock the client (laser, RF, ...) fundamental frequency to the reference with minimal residual jitter;
- Monitor clients and beam, and apply delay corrections to compensate residual (out-of-loop) drifts.

GLOSSARY:

SYNCORIZATION SYSTEMS

Triggers

Digital signals still in the Timing business but the required precision is orders of magnitude less demanding. Not covered in this lecture (but nevertheless an important aspect of machine operation).

SECTION II

- Fourier and Laplace Transforms
- Random Processes
- Phase Noise in Oscillators
BASICS:

Fourier and Laplace Transforms

Transforms Summary

<table>
<thead>
<tr>
<th>Transforms</th>
<th>Fourier - \mathcal{F}</th>
<th>Laplace - \mathcal{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$</td>
<td>$X(s) = \int_{0}^{+\infty} x(t) e^{-st} dt$</td>
</tr>
<tr>
<td>Inverse Transform</td>
<td>$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$</td>
<td>$x(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s) e^{st} ds$</td>
</tr>
<tr>
<td>Transformability Conditions</td>
<td>$</td>
<td>x(t)</td>
</tr>
<tr>
<td>Linearity</td>
<td>$\mathcal{F}[ax(t) + by(t)] = aX(\omega) + bY(\omega)$</td>
<td>$\mathcal{L}[ax(t) + by(t)] = aX(s) + bY(s)$</td>
</tr>
<tr>
<td>Convolution Product</td>
<td>$(x * y)(t) \equiv \int_{-\infty}^{+\infty} x(t + \tau) \cdot y(\tau) d\tau$</td>
<td>$(x * y)(t) \equiv \int_{0}^{+\infty} x(t + \tau) \cdot y(\tau) d\tau$</td>
</tr>
<tr>
<td>Derivative</td>
<td>$\mathcal{F}\left[\frac{dx}{dt}\right] = j\omega \cdot X(\omega)$</td>
<td>$\mathcal{L}\left[\frac{dx}{dt}\right] = s \cdot X(s)$</td>
</tr>
<tr>
<td>Delay</td>
<td>$\mathcal{F}\left[x(t - \tau)\right] = X(\omega) e^{-j\omega \tau}$</td>
<td>$\mathcal{L}\left[x(t - \tau)\right] = X(s) e^{-s\tau}$</td>
</tr>
</tbody>
</table>

Random Processes

Random Process Summary

Let’s consider a random variable $x(t)$ representing a physical observable quantity.

- **Stationary process:** statistical properties invariant for a time shift $x(t) \to x(t + \Delta t)$

 ![Stationary Process Diagram](image)

 Stationarity:

 $\mu_t = \mu = \bar{x}$

 $\sigma_{x_t} = \sigma_{x} = \sigma_x$

- **Ergodic process:** statistical properties can be estimated by a single process realization

- **Uncorrelation:** if $x(t)$ and $y(t)$ are 2 random variables completely uncorrelated (statistically independent), then:

 $\sigma_{xy} = \sigma_x^2 + \sigma_y^2$ with $\sigma_{xy} = \bar{x} - \bar{x}^2$
Power spectrum:

Since $x_{\text{rms}} \neq 0$, a real random variable $x(t)$ is in general not directly Fourier transformable. However, if we observe $x(t)$ only for a finite time ΔT, we may truncate the function outside the interval $[-\Delta T/2, \Delta T/2]$ and remove any possible limitation in the function transformability. The truncated function $x_{\Delta T}(t)$ is defined as:

$$x_{\Delta T}(t) = \begin{cases} x(t) & -\Delta T/2 \leq t \leq \Delta T/2 \\ 0 & \text{elsewhere} \end{cases}$$

Let $X_{\Delta T}(f)$ be the Fourier transform of the truncated function $x_{\Delta T}(t)$. It might be demonstrated that the rms value of the random variable can be computed on the base of the Fourier transform $X_{\Delta T}(f)$ according to:

$$x_{\text{rms}}^2 = \int_{-\infty}^{\infty} S_x(f) \, df$$

with

$$S_x(f) \equiv \lim_{\Delta T \to \infty} \frac{|X_{\Delta T}(f)|^2}{\Delta T}$$

The function $S_x(f)$ is called "power spectrum" or "power spectral density" of the random variable $x(t)$. The time duration of the variable observation ΔT sets the minimum frequency $f_{\text{min}} = 1/\Delta T$ containing meaningful information in the spectrum of $x_{\Delta T}(t)$.

LTI Transfer Functions

Fourier and Laplace transforms are used to compute the response of Linear Time Invariant (LTI) systems:

- **Time Domain**
 - $\delta(t)$: LTI system $\rightarrow h(t)$
 - $v_{\text{in}}(t)$: LTI system $\rightarrow v_{\text{in}}(t) \cdot h(t)$

- **Fourier Transform**
 - $e^{j\omega t}$: LTI system $\rightarrow H(j\omega) e^{j\omega t}$
 - $V_{\text{in}}(j\omega)$: LTI system $\rightarrow V_{\text{in}}(j\omega) \cdot H(j\omega)$

- **Laplace Transform**
 - e^{st}: LTI system $\rightarrow H(s) e^{st}$
 - $V_{\text{in}}(s)$: LTI system $\rightarrow V_{\text{in}}(s) \cdot H(s)$

Noise power spectra

- $S_{\text{in}}(\omega)$: LTI system $\rightarrow |H(j\omega)|^2 \cdot S_{\text{in}}(\omega)$
The most important task of a synchronization system is to lock firmly the phase of each client to the reference oscillator in order to minimize the residual jitter. The clients are basically VCOs (Voltage Controlled Oscillators), i.e. local oscillators (electrical for RF systems, optical for laser systems) whose fundamental frequency can be changed by applying a voltage to a control port.

Before discussing the lock schematics and performances, it is worth introducing some basic concepts on phase noise in real oscillators.

Ideal oscillator

\[V(t) = V_0 \cdot \cos(\omega_0 t + \varphi) \]

Real oscillator

\[V(t) = V_0 \cdot (1 + \alpha(t)) \cdot \cos(\omega_0 t + \varphi(t)) \]

In real oscillators the amplitude and phase will always fluctuate in time by a certain amount because of the unavoidable presence of noise. However, by common sense, a well behaving real oscillator has to satisfy the following conditions:

\[|\alpha(t)| \ll 1; \quad \frac{d\varphi}{dt} \ll \omega_0 \]

A real oscillator signal can be also represented in Cartesian Coordinates \((\alpha, \varphi) \rightarrow (V_1, V_2)\):

\[V(t) = V_0 \cdot \cos(\omega_0 t + \varphi(t)) = V_0 \cdot \cos(\omega_0 t + \varphi(t)) - V_0 \cdot \sin(\omega_0 t) \]

If \(V_1, V_2 \ll V_0\),

\[\alpha(t) = V_1(t)/V_0, \quad \varphi(t) = V_2(t)/V_0 \ll 1 \]

Real oscillator outputs are amplitude (AM) and phase (PM) modulated carrier signals. In general it turns out that close to the carrier frequency the contribution of the PM noise to the signal spectrum dominates the contribution of the AM noise. For this reason the lecture will be focused on phase noise. However, amplitude noise in RF systems directly reflects in energy modulation of the bunches, that may cause bunch arrival time jitter when beam travels through dispersive and bended paths (i.e. when \(B_{\text{disp}} \neq 0\) as in magnetic chicanes).

Let’s consider a real oscillator and neglect the AM component:

\[V(t) = V_0 \cdot \cos[\omega_0 t + \varphi(t)] = V_0 \cdot \cos[\omega_0 (t + \tau(t))] \]

with \(\tau(t) \equiv \varphi(t)/\omega_0\)

The statistical properties of \(\varphi(t)\) and \(\tau(t)\) qualify the oscillator, primarily the values of the standard deviations \(\sigma_{\varphi}\) and \(\sigma_{\tau}\) (or equivalently \(\varphi_{\text{rms}}\) and \(\tau_{\text{rms}}\) since we may assume a zero average value).

As for every noise phenomena they can be computed through the phase noise power spectral density \(S_p(f)\) of the random variable \(\varphi(t)\).
Again, for practical reasons, we are only interested in observations of the random variable \(\varphi(t) \) for a finite time \(\Delta T \). So we may truncate the function outside the interval \([-\Delta T/2, \Delta T/2] \) to recover the function transformability.

Let \(\Phi_{\Delta T}(f) \) be the Fourier transform of the truncated function \(\varphi_{\Delta T}(t) \). We have:

\[
(\varphi_{\Delta T}^2)_{\Delta T} = \int_{f_{\min}}^{f_{\max}} S_p(f) \, df \quad \text{with} \quad S_p(f) = 2 \left| \frac{\Phi_{\Delta T}(f)}{f} \right|^2
\]

\(S_p(f) \) is the phase noise power spectral density, whose dimensions are \(\text{rad}^2/\text{Hz} \).

Again, the time duration of the variable observation \(\Delta T \) sets the minimum frequency \(f_{\min} \approx 1/\Delta T \) containing meaningful information on the spectrum \(\Phi_{\Delta T}(f) \) of the phase noise \(\varphi_{\Delta T}(t) \).

IMPORTANT: we might still write

\[
\varphi_{f_{\max}}(f) = \lim_{\Delta T \to 0} (\varphi_{\Delta T}^2)_{\Delta T} = \int_{f_{\min}}^{f_{\max}} \left(2 \cdot \lim_{\Delta T \to 0} \left| \frac{\Phi_{\Delta T}(f)}{f} \right|^2 \right) df = \int_{f_{\min}}^{f_{\max}} S_p(f) \, df
\]

but we must be aware that \(\varphi_{f_{\max}} \) in some case might diverge. This is physically possible since the power in the carrier does only depend on amplitude and not on phase. In these cases the rms value can only be specified for a given observation time \(\Delta T \) or equivalently for a frequency range of integration \([f_1, f_2]\).

The function \(L(f) \) is defined as the “Single Sideband Power Spectral Density” and is called “script-L”:

\[
L(f) = \begin{cases} \frac{\text{power in } 1 \text{ Hz phase modulation single sideband}}{\text{total signal power}} & f \geq 0 \\ 0 & f < 0 \end{cases}
\]

Linear scale \(\rightarrow L(f) \) units \(\equiv \text{Hz}^{-1} \) or \(\text{rad}^2/\text{Hz} \)

Log scale \(\rightarrow 10 \cdot \log[L(f)] \) units \(\equiv \text{dBc/Hz} \)

CONCLUSIONS:

- Phase (and time) jitters can be computed from the spectrum of \(\varphi(t) \) through the \(L(f) \) - or \(S_p(f) \) - function;
- Computed values depend on the integration range, i.e. on the duration \(\Delta T \) of the observation. Criteria are needed for a proper choice (we will see ...).
BASICS: Phase Noise Nature and Spectra

Close-in phase noise:

\[S_{\varphi}(f) = \sum_{k=0}^{\infty} \frac{b_{-k}}{f^k} \]

- **Type** | **Origin** | **\(S_{\varphi}(f) \)**
- \(f^0 \) | White | Thermal noise of resistors | \(\frac{V^2}{Hz} \)
- \(f^{-1} \) | Shot | Current quantization | \(2qI_B/I_0 \)
- \(f^{-2} \) | Flicker | Flicking PM | \(b_{-2}/f^2 \)
- \(f^{-3} \) | Flicker FM | Flicking FM | \(b_{-3}/f^3 \)
- \(f^{-4} \) | Random walk | Brownian motion | \(b_{-4}/f^4 \)
- \(f^{-n} \) | ... | high orders ... | ...

Phase Noise Examples

- **Time jitter** can be computed according to:

\[
\sigma_t^2 = \frac{1}{2 \omega_0^2} \int_{-\omega_0}^{\omega_0} S_{\varphi}(f) \, df
\]

- same time jitter \(\rightarrow S_{\varphi}(f) \propto \omega_0^2 \)

Phase noise spectral densities of different oscillators have to be compared at same carrier frequency \(\omega_c \) or scaled as \(\omega_c^{-2} \) before comparison.

Commercial frequency synthesizer

- \(f_c = 2856 \text{ MHz} \)
- Spurious
- 60 fs
- 10 Hz - 10 MHz
- Low noise RMO

Commercial frequency synthesizer

- \(f_{0} = 2856 \text{ MHz} \)
- Commercial frequency synthesizer
- \(f = 3024 \text{ MHz} \)
- Low noise RMO

Typical SSB PSD shape with noise sources

- \(\frac{F_{\text{in}}}{F_{\text{out}}} \)
- Corner frequency

- \([b_{-k}] = \text{rad}^2 Hz^k \)

Typical SSB PSD shape with noise sources

- \(F_{\text{in}} \)
- \(F_{\text{out}} \)
- Offset frequency

- \(\text{SNR}_{\text{in}}/\text{SNR}_{\text{out}} \)

Commercial frequency synthesizer

- \(f = 3024 \text{ MHz} \)

Commercial frequency synthesizer

- \(f_{\text{out}} \)
SECTION III

BASICS

- **Phase Detectors**
- **Phase Locked Loops**

Phase detection on RF signals

The **Double Balanced Mixer** is the most diffused RF device for frequency translation (up/down conversion) and detection of the relative phase between 2 RF signals (LO and RF ports). The LO voltage is differentially applied on a diode bridge switching on/off alternatively the D1-D2 and D3-D4 pairs, so that the voltage at IF is:

\[
V_{\text{IF}}(t) = V_{\text{IF}}(t) \cdot \text{sgn}(V_{\text{LO}}(t))
\]

\[
V_{\text{IF}}(t) = V_{\text{RF}} \cdot \cos(\omega_{\text{RF}} t) \cdot \cos(\omega_{\text{LO}} t) \cdot \text{sgn}(\omega_{\text{RF}} t) + \sum_{m=-\infty}^{\infty} \frac{4}{m \pi} \cos(m \omega_{\text{RF}} t) + \text{intermod products}
\]

Where:

- \(V_{\text{RF}}\) is the RF input voltage
- \(V_{\text{LO}}\) is the LO input voltage
- \(\omega_{\text{RF}}\) and \(\omega_{\text{LO}}\) are the RF and LO angular frequencies, respectively
- \(\text{sgn}\) is the sign function

Diagram

- **LO**
- **RF**
- **IF** (Intermediate Frequency)
- Diode Bridge Switching

Equations

\[
V_{\text{IF}}(t) = V_{\text{RF}} \cdot \cos(\omega_{\text{RF}} t) \cdot \cos(\omega_{\text{LO}} t) \cdot \text{sgn}(\omega_{\text{RF}} t) + \sum_{m=-\infty}^{\infty} \frac{4}{m \pi} \cos(m \omega_{\text{RF}} t) + \text{intermod products}
\]
Phase detection on RF signals

If \(f_{\text{LO}} = f_{\text{RF}} \), the IF signal has a DC component given by:

\[
V_{\text{IF DC}}(t) = k_{\text{LO}} A_{\text{RF}} \cos \theta
\]

If \(A_{\text{RF}} \ll A_{\text{LO}} \), then:

\[
V_{\text{IF}}(t) = V_{\text{RF}}(t) + \text{high harmonics}
\]

\[
\phi = \arctan \left(\frac{V_{\text{LO}}}{V_{\text{RF}}} \right) + \frac{\pi}{2} [\text{sgn}(V_{\text{RF}})]
\]

\[
\frac{dV_{\text{IF}}}{d\phi} = \mu k_{\text{LO}} A_{\text{RF}} \frac{5 + 10 \text{mV}/\text{Deg}}{A_{\text{RF}}^{1/2}} + 15 + 30 \text{mV/ps}
\]

- Passive
- Sensitivity proportional to level, AM → PM not fully rejected
- Cheap, Robust
- Noise figure \(F \approx CL \)
- Good sensitivity but lower wrt optical devices

Direct conversion with photo detector (PD)

- Low phase noise
- Temperature drifts (0.4ps/°C)
- AM to PM conversion (0.5–4ps/mW)

Phase detection between RF and Laser –
Sagnac Loop Interferometer or BOM-PD
(Balanced Optical Microwave Phase Detector)

Recently (~10 years) special devices to perform direct measurements of the relative phase between an RF voltage and a train of short laser pulses have been developed

- Balanced optical mixer to lock RF osc.
- Insensitive against laser fluctuation
- Very low temperature drifts

Results: \(f = 1.3 \text{GHz jitter} \& \text{drift} < 10 \text{fs rms} \) limited by detection!
BASICS: Phase Detectors

Optical vs. Optical

Balanced cross correlation of very short optical pulses ($\sigma_t \approx 200$ fs) provides an extremely sensitive measurement of the relative delay between 2 pulses.

The diagram illustrates how two pulses, Σ_1 and Σ_2, are delayed and then compared using a phase detector. The delay 1 and delay 2 are shown with Δt as the relative delay. The SFG (Sum Frequency Generation) process is depicted, showing how the two pulses, delayed and combined, generate a shorter wavelength pulse proportional to their time overlap in each branch by means of non-linear crystal.

In a second branch the two polarizations experience a differential delay $\Delta \tau = \tau_1 - \tau_2 = \sigma_t$. The amplitudes of the interaction radiation pulses are converted to voltages by photodiodes and their difference is taken as the detector output V_0.

If the initial time delay between the pulses is exactly $\Delta \tau / 2$ then clearly $V_0 = 0$ (balance), while it grows rapidly as soon as initial delay deviates.

Detection sensitivity up to 10 mV/fs achievable with ultra-short pulses!!!

BASICS: Phase Locked Loops for Client Synchronization

What is peculiar in PLLs for clients of a stabilization system of a Particle Accelerator facility?

- Both the reference and client oscillators can be either RF VCOs or laser cavities. Phase detectors are chosen consequently;
- Laser oscillators behave as VCOs by trimming the cavity length through a piezo controlled mirror.
- Limited modulation bandwidth (\approx few kHz typical);
- Limited dynamic range ($\Delta f/f = 10^{-4}$), overcome by adding motorized translational stages to enlarge the mirror positioning range;
- At frequencies beyond PLL bandwidth ($f > 1$ kHz) mode-locked lasers exhibit excellent low-phase noise spectrum.

![Graph showing phase noise of a locked OMO for different loop filters](image)
PLls are a very general subject in RF electronics, used to synchronize oscillators to a common reference or to extract the carrier from a modulated signal (FM tuning). In our context PLLs are used to phase-lock the clients of the synchronization system to the master clock (RMO or OMO).

The building blocks are:

- A VCO, whose frequency range includes \((D/N)f_{\text{ref}}\);
- A phase detector, to compare the scaled VCO phase to the reference;
- A loop filter, which sets the lock bandwidth;
- A prescalers or synthesizer \((N/D)\) frequency multiplier, \(N\) and \(D\) integers if different frequencies are required.

PLLs are a very general subject in RF electronics, used to synchronize oscillators to a common reference or to extract the carrier from a modulated signal (FM tuning). In our context PLLs are used to phase-lock the clients of the synchronization system to the master clock (RMO or OMO).

The building blocks are:

- A VCO, whose frequency range includes \((D/N)f_{\text{ref}}\);
- A phase detector, to compare the scaled VCO phase to the reference;
- A loop filter, which sets the lock bandwidth;
- A prescalers or synthesizer \((N/D)\) frequency multiplier, \(N\) and \(D\) integers if different frequencies are required.

Loop filters provide PLL stability, tailoring the frequency response, and set loop gain and cut-off frequency. The output phase spectrum is locked to the reference if \(|H(j\omega)|>>1\), while it returns similar to the free run VCO if \(|H(j\omega)|<1\).

A flat-frequency response loop filter gives already a pure integrator loop transfer function thanks to a pole in the origin \((f=0)\) provided by the dc frequency control of the VCO.

Loop filters properly designed can improve the PLL performance:

- By furtherly increasing the low-frequency gain and remove phase error offsets due to systematic VCO frequency errors, by means of extra poles in the origin (integrators) compensated by zeroes properly placed;
- By enlarging the PLL BW through equalization of the frequency response of the VCO modulation port.

A very steep frequency response can be obtained (slope = 40 dB/decade) in stable conditions (see Nyquist plot).

Equalization of the VCO modulation port frequency response allows increasing the loop gain.
Performances of Synchronization Systems

- **Client Residual Jitter**
- **Stabilized Reference Distribution**

A client with a free-run phase noise φ_{ir} once being PLL locked to the reference with a loop gain $H_l(f, 2\pi f)$ will show a residual phase jitter φ_j and a phase noise power spectrum S_j according to:

$$\varphi_j = \frac{H_l}{1 + H_l} \varphi_{ref} + \frac{1}{1 + H_l} \varphi_{ir} \rightarrow S_j(f) = \frac{|H_l|^2}{1 + |H_l|^2} S_{ref}(f) + \frac{1}{1 + |H_l|^2} S_{ir}(f)$$

Client absolute residual time jitter

$$\sigma_{t_i}^2 = \frac{1}{\omega_{ref}^2 f_{min}} \int_{f_{min}}^{\infty} \left[|H_l|^2 S_{ref}(f) + S_{ir}(f)\right] df$$

Incoherent noise contributions
Performances of Synchronization Systems:
Residual Jitter of Clients

But we are finally interested in relative jitter between clients and reference \(\phi_{i-\text{ref}} = \phi_i - \phi_{\text{ref}} \), and among different clients \(\phi_{i-j} = \phi_i - \phi_j \):

\[
\phi_{i-j} = \frac{\phi_i - \phi_{\text{ref}}}{1 + H_i} - \frac{\phi_j - \phi_{\text{ref}}}{1 + H_j} \rightarrow S_{i-j}(f) = \frac{S_i(f) + S_{\text{ref}}(f)}{1 + H_i^2} + \frac{S_j(f) + S_{\text{ref}}(f)}{1 + H_j^2}
\]

Client residual relative time jitter

\[
\sigma^2_{i-j} = \frac{1}{\omega_{\text{ref}}} \int_{f_{\text{min}}}^{\infty} \left[S_i(f) + S_j(f) + \frac{S_{\text{ref}}(f)}{1 + H_i^2} + \frac{S_{\text{ref}}(f)}{1 + H_j^2} \right] df
\]

Residual relative time jitter between clients \(i-j \)

If \(H_i \neq H_j \) there is a direct contribution of the master clock phase noise \(S_{\text{ref}}(f) \) to the relative jitter between clients \(i \) and \(j \) in the region between the cutoff frequencies of the 2 PLLs. That’s why a very low RMO phase noise is specified in a wide spectral region including the cut-off frequencies of all the client PLLs (0.1÷100 kHz typical).

Performances of Synchronization Systems:
Drift of the reference distribution

Client jitters can be reduced by efficient PLLs locking to a local copy of the reference. Reference distribution drifts need to be under control to preserve a good facility synchronization.

Depending on the facility size and specification the reference distribution can be:

RF based, through coaxial cables
- Passive (mainly) / actively stabilized
- Cheap
- Large attenuation at high frequencies
- Sensitive to thermal variations (copper linear expansion = \(1.7 \times 10^{-5}/^\circ C \))
- Low-loss 3/8" coaxial cables very stable for \(\Delta T < 1^\circ C \) @ \(T_0 \approx 24^\circ C \)

Optical based, through fiber links
- Pulsed (mainly), also CW AM modulated
- High sensitivity error detection (cross correlation, interferometry, ...)
- Small attenuation, large BW
- Expensive
- Active stabilization always needed (thermal sensitivity of fibers)
- Dispersion compensation always needed for pulsed distribution
Performances of Synchronization Systems: Drift of the reference distribution

RF distribution

- Standard reflectometer
- Interferometer
- LO
- 1 – 1000 MHz – GHz
- SLAC
- FLASH
- E-XFEL

Pulsed Optical distribution

- Mode-locked laser
- Δf ~ 5 THz
- FERMI
- FLASH
- E-XFEL
- SwissFEL

Sketches from H. Schlarb

Long distances

Active link stabilization required!!!

Performances of Synchronization Systems:

Drift of the reference distribution

Active stabilized links are based on high resolution round trip time measurements and path length correction to stick at some stable reference value.

Pulsed optical distribution is especially suitable, because of low signal attenuation over long links and path length monitoring through very sensitive pulse cross-correlators. However, dispersion compensation of the link is crucial to keep the optical pulses very short (~ 100 fs).

For a 3/8" cable (FSJ2):

- \(T_{opt} \) cable physical elongation is \(\Delta L \) compensated by dielectric constant variation. PPM relative delay variation is:

\[
\Delta \frac{\tau}{PPM} = \left(\frac{T_{opt} - T_c}{T_c} \right)^2
\]

For a 3/8" cable (FSJ2): \(T_{opt} \approx 24 \, ^\circ C, \ T_c \approx 2 \, ^\circ C \). Good enough?

\[
L = 1 \, km \rightarrow \tau = 5 \, \mu s \rightarrow \Delta \tau / \tau = 5 \, fs / 5 \, \mu s = 10^{-3} \text{PPMs} !!!
\]

Sketches from H. Schlarb

Active link stabilization required!!!

Performances of Synchronization Systems:

Drift of the reference distribution

Active stabilized links are based on high resolution round trip time measurements and path length correction to stick at some stable reference value.

Pulsed optical distribution is especially suitable, because of low signal attenuation over long links and path length monitoring through very sensitive pulse cross-correlators. However, dispersion compensation of the link is crucial to keep the optical pulses very short (~ 100 fs).

For a 3/8" cable (FSJ2):

- \(T_{opt} \) cable physical elongation is \(\Delta L \) compensated by dielectric constant variation. PPM relative delay variation is:

\[
\Delta \frac{\tau}{PPM} = \left(\frac{T_{opt} - T_c}{T_c} \right)^2
\]

For a 3/8" cable (FSJ2): \(T_{opt} \approx 24 \, ^\circ C, \ T_c \approx 2 \, ^\circ C \). Good enough?

\[
L = 1 \, km \rightarrow \tau = 5 \, \mu s \rightarrow \Delta \tau / \tau = 5 \, fs / 5 \, \mu s = 10^{-3} \text{PPMs} !!!
\]

Sketches from H. Schlarb

Active link stabilization required!!!

Performances of Synchronization Systems:

Drift of the reference distribution

Active stabilized links are based on high resolution round trip time measurements and path length correction to stick at some stable reference value.

Pulsed optical distribution is especially suitable, because of low signal attenuation over long links and path length monitoring through very sensitive pulse cross-correlators. However, dispersion compensation of the link is crucial to keep the optical pulses very short (~ 100 fs).

For a 3/8" cable (FSJ2):

- \(T_{opt} \) cable physical elongation is \(\Delta L \) compensated by dielectric constant variation. PPM relative delay variation is:

\[
\Delta \frac{\tau}{PPM} = \left(\frac{T_{opt} - T_c}{T_c} \right)^2
\]

For a 3/8" cable (FSJ2): \(T_{opt} \approx 24 \, ^\circ C, \ T_c \approx 2 \, ^\circ C \). Good enough?

\[
L = 1 \, km \rightarrow \tau = 5 \, \mu s \rightarrow \Delta \tau / \tau = 5 \, fs / 5 \, \mu s = 10^{-3} \text{PPMs} !!!
\]
Beam Synchronization

- **Bunch Arrival Monitors**
- **Effects of Client Synchronization Errors on Bunch Arrival Time**

The beam is *streaked* by a transverse RF cavity on a *screen*. The image is captured by a camera. Longitudinal charge distribution and centroid position can be measured.

- Works typically on single bunch. Bunch trains can be eventually resolved with fast gated cameras;
- Destructive (needs a screen...)
- Measure bunch wrt to RF (relative measurement)
- with a spectrometer \rightarrow long, phase space imaging: $(x, e) \rightarrow (y, x)$

$$\tau_{RF} = \frac{E/e}{\omega_{RF} V_{1}} \sqrt{\frac{e_{L}}{B_{RF}}}$$

Achievable resolution down to ≈ 10 fs

Deflector screen

The beam is streaked by a transverse RF cavity on a screen. The image is captured by a camera. Longitudinal charge distribution and centroid position can be measured.

- Works typically on single bunch. Bunch trains can be eventually resolved with fast gated cameras;
- Destructive (needs a screen...)
- Measure bunch wrt to RF (relative measurement)
- with a spectrometer \rightarrow long, phase space imaging: $(x, e) \rightarrow (y, x)$

$$\tau_{RF} = \frac{E/e}{\omega_{RF} V_{1}} \sqrt{\frac{e_{L}}{B_{RF}}}$$

Achievable resolution down to ≈ 10 fs

Deflector screen

![Deflector screen image](image-url)
A reference laser pulse train (typically taken from the facility OMO) is connected to the optical input of a Mach-Zehnder interferometric modulator (EOM). The short laser pulses are amplitude-modulated by a bipolar signal taken from a button BPM placed along the beam path and synchronized near to the voltage zero-crossing. The bunch arrival time jitter and drift is converted in amplitude modulation of the laser pulses and measured.

- Works very well on bunch trains;
- Non-intercepting;
- Measure bunch wrt to a laser reference (OMO);
- Demonstrated high resolution

Sketches from H. Schlarb and F. Loehl

Beam arrival time measurement: Electro-Optical Sampling

An electro-optic crystal is placed near the beam trajectory. In correspondence to the beam passage the crystal is illuminated with a short reference laser pulse transversally enlarged and linearly polarized. The bunch electric field induces birefringence in the crystal, so that while propagating the laser gains elliptical polarization. A polarized output filter delivers a signal proportional to the polarization rotation, i.e. to the beam longitudinal charge distribution.

- Single shot, non-intercepting;
- Provides charge distribution and centroid position;
- Resolution ≈ 50 fs for the bunch duration, higher for centroid arrival time (1 pixel = 10 fs).
Beam arrival time: Magnetic Compressor

Basics of magnetic bunch compression

Energy chirp h:

$$W_0 = W_{in} + qV_{RF} \cos (\varphi_o)$$

Final energy error of an accelerated particle starting with energy and phase errors ΔW_{in} and $\Delta \varphi$:

$$\Delta W_0 = \Delta W_{in} - qV_{RF} \sin (\varphi_o) \Delta \varphi = \Delta W_{in} + \frac{c}{\omega_{RF}} W_0 \Delta \varphi$$

with:

$$h \equiv \frac{\Delta W/W_0}{\Delta z} = \frac{\omega_{RF} \Delta W/W_0}{c \Delta \varphi} = -\frac{qV_{RF} \sin (\varphi_o)}{W_{in} + qV_{RF} \cos (\varphi_o)} \frac{\omega_{RF}}{c}$$

Chirp coefficient = relative energy deviation normalized to the particle z position.

Non-isochronous transfer line:

The bunch compression process is completed by making the chirped beam travel along a non-isochronous transfer line. Particles with different energies travel along paths of different lengths according to:

$$\Delta L = R_{S6} (\Delta W_0/W_0)$$

Path elongation normalized to the relative energy error.

Overall, a particle entering the magnetic compressor with a time error Δt_{in} and a relative energy error $\Delta W_{in}/W_{in}$ will leave it with time and relative energy errors Δt_o and ΔW_o, given by:

$$\frac{\Delta W_o}{W_0} = h c \frac{\Delta t_{in}}{W_0} + \frac{W_{in}}{W_0} \frac{\Delta W_{in}}{W_{in}}$$

$$\Delta t_o = \Delta t_{in} + \frac{\Delta L}{c} = \Delta t_{in} + \frac{R_{S6}}{c} (\Delta W_0/W_0) = \left(1 + \frac{1}{h} R_{S6} \right) \Delta t_{in} + \frac{R_{S6} W_{in}}{c W_0} (\Delta W_{in}/W_{in})$$

In the end if the compressor is tuned to get $h \cdot R_{S6} \approx -1$ it may easily noticed that the exit time of a particle is almost independent on the entering time. This mechanism describes the deformation (compression) of the longitudinal distribution of the particles in a bunch, but also the multi-shot dynamics of the bunch center of mass. The bunch arrival time downstream the compressor is weakly related to the upstream arrival time.
Compressor longitudinal transfer matrices:

Previous results can be summarized in a matrix notation, according to:

\[
\begin{pmatrix}
\Delta t \\
\Delta W/W
\end{pmatrix}
_o =
\begin{pmatrix}
1 & R_{56}

c & \text{hc}
\end{pmatrix}
\begin{pmatrix}
1 & 0
0 & 1
\end{pmatrix}
\begin{pmatrix}
\Delta t \\
\Delta W/W
\end{pmatrix}
_{in} =
\begin{pmatrix}
1 + hR_{56} & R_{56}W_{in}/cW_0

c & W_{in}/W_0
\end{pmatrix}
\begin{pmatrix}
\Delta t \\
\Delta W/W
\end{pmatrix}
_{in}
\]

\[
\hat{B}
\]
non-isochronous drift

\[
\hat{A}
\]
chirping acceleration

\[
\hat{C} = \hat{B} \cdot \hat{A}
\]
total compressor stage

Effects of PM and AM in the compressor RF on final bunch energy and arrival time:

Let’s consider now the presence of phase \((\Delta \phi_o = -\omega_{RF} \Delta t_{RF})\) and amplitude \((\Delta V_{RF}/V_{RF})\) errors in the RF section of the compressor. The resulting energy error of the beam entering in the non-isochronous drift is:

\[
\Delta W_o = q\Delta V_{RF} \cos(\phi_o) - qV_{RF} \sin(\phi_o) \Delta \phi_o
\]

\[
\Delta W_o/W_o = -hc \Delta t_{RF} + W_o/W_{in} \Delta V_{RF}/V_{RF}
\]

The energy error will result in a time error downstream the drift through the transfer matrix \(\hat{B}\).
To the first order the RF noise does not affect the bunch internal distribution, since RF amplitude and phase does not change significantly over a bunch time duration. It will more affect the bunch-to-bunch energy deviation and arrival time.

\[
\Delta \tau = \frac{(\Delta W/W)_{out}}{\Delta W/W}_{in} + \tilde{\alpha} \left(\frac{\Delta W/W}{V_{RF/V_{RF}}} \right)
\]

The bunch arrival time downstream the compressor is strongly related to the phase of the chirping RF. It is also affected by initial energy errors and RF amplitude variations.

How beam arrival time is affected by synchronization errors of the sub-systems?

Perturbations of subsystem phasing \(\Delta t_i \) will produce a change \(\Delta t_b \) of the beam arrival time.

First-order approximation:

\[
\Delta t_b = \sum_i a_i \Delta t_i = \sum_i \frac{\Delta t_i}{c_i} \text{ with } \sum_i a_i = 1
\]

Values of \(a_i \) can be computed analytically, by simulations or even measured experimentally. They very much depend on the machine working point.
Beam synchronization

A. Gallo, Low Level RF challenges/timing systems
Beam Dynamics and Technologies for Future Colliders Feb.21 – March 6 2018, Zurich, CH

Beam synchronization

How beam arrival time is affected by synchronization errors of the sub-systems?

- No compression: Beam captured by the GUN and accelerated on-crest
 \[a_{PC} \approx 0.7 ; \quad a_{RF,\text{GUN}} \approx 0.3 ; \quad \text{others } a_i \approx 0 \]

- Magnetic compression: Energy-time chirp imprinted by off-crest acceleration in the booster and exploited in magnetic chicane to compress the bunch
 \[a_{\text{RF,beam}} \approx 1 ; \quad |a_{PC}| \ll 1 ; \quad \text{others } a_i \approx 0 \]
 Compression can be staged (few compressors acting at different energies). Bunch can be overcompressed (head and tail reversed, \(a_{PC} < 0 \)).

- RF compression: a non fully relativistic bunch (\(E_f \approx f \) for MEV at Gun exit) injected ahead the crest in an RF capture section slips back toward an equilibrium phase closer to the crest during acceleration, being also compressed in this process
 \[a_{\text{RF,FS}} \approx 1 ; \quad |a_{PC}| |a_{\text{RF,FS}}| \ll 1 ; \quad \text{others } a_i \approx 0 \]
 The bunch gains also an Energy-time chirp. RF and magnetic compressions can be combined.

Particle distribution within the bunch and shot-to-shot centroid distribution behave similarly, but values of coefficients \(a_i \) might be different since space charge affects the intra-bunch longitudinal dynamics.

Bunch Arrival Time Jitter

If we consider uncorrelated residual jitters of \(\Delta t_i \) (measured wrt the facility reference clock), the bunch arrival time jitter \(\sigma_{t_\text{a}} \) is given by:

\[
\sigma_{t_\text{a}}^2 = \sum_i a_i^2 \sigma_{t_i}^2
\]

while the jitter of the beam respect to a specific facility sub-system (such as the PC laser or the RF accelerating voltage of a certain group of cavities) \(\sigma_{t_{\text{a},j}} \) is:

\[
\sigma_{t_{\text{a},j}}^2 = (a_j - 1)^2 \sigma_{t_j}^2 + \sum_i a_{ij}^2 \sigma_{t_i}^2
\]

EXAMPLE: PC laser jitter \(\sigma_{t_{\text{PC}}} \approx 70 \text{ fs} \), RF jitter \(\sigma_{t_{\text{RF}}} \approx 30 \text{ fs} \)

- No Compression: \(a_{PC} \approx 0.65, \ a_{RF,\text{GUN}} \approx 0.35 \)
 \(\sigma_{t_{\text{a}}} \approx 47 \text{ fs} \)

- Magnetic Compression: \(a_{PC} \approx 0.2, \ a_{\text{RF,beam}} \approx 0.8 \)
 \(\sigma_{t_{\text{a}}} \approx 28 \text{ fs} \)

\(\sigma_{t_{\text{a},PC}} \approx 27 \text{ fs} ; \sigma_{t_{\text{a},RF}} \approx 50 \text{ fs} \)

\(\sigma_{t_{\text{a},PC}} \approx 61 \text{ fs} ; \sigma_{t_{\text{a},RF}} \approx 15 \text{ fs} \)
CONCLUSIONS

- Timing and Synchronization has shown growth considerably in the last ~15 years as a Particle Accelerator specific discipline.
- It involves concepts and competences from various fields such as Electronics, RF, Laser, Optics, Control, Diagnostics, Beam dynamics, ...
- Understanding the real synchronization needs of a facility and proper specifications of the systems involved are crucial for successful and efficient operation (but also to avoid over specification leading to extra-costs and unnecessary complexity ...)
- Synchronization diagnostics (precise arrival time monitors) is fundamental to understand beam behavior and to provide input data for beam-based feedback systems correcting synchronization residual errors.
- Although stability down to the fs scale has been reached, many challenges still remain since requirements get tighter following the evolution of the accelerator technology. The battlefield will move soon to the attosecond frontier ...

REFERENCES #1

- F. Loehl, Timing and Synchronization, Accelerator Physics (Intermediate level) – Chios, Greece, 18-30 September 2011 – slides on web
- H. Schlarb, Timing and Synchronization, Advanced Accelerator Physics Course – Trondheim, Norway, 18-29 August 2013 - slides on web
- E. Rubiola, R. Boudot, Phase Noise in RF and Microwave Amplifiers, slides @ http://www.inee-uffc.org/frequency-control/learning/pdf/Rubiola-Phase_Noise_in_RF_and_Microwave_Amplifiers.pdf
- O. Svelto, Principles of Lasers, Springer
- J. Kim et al., Long-term stable microwave signal extraction from mode-locked lasers, 9 July 2007 / Vol. 15, No. 14 / OPTICS EXPRESS 8951
REFERENCES #2

- S. Schulz et al., “An optical cross-correlator scheme to synchronize distributed laser systems at FLASH,” THPC160, Proceedings of EPAC08, Genoa, Italy
- M. K. Bock, “Recent developments of the bunch arrival time monitor with femtosecond resolution at FLASH,” WCECMH02, Proceedings of IPAC’10, Kyoto, Japan
- http://www.nist.gov/
- http://www.mrf.fi/
- http://spie.org/Publications/Proceedings/Paper/10.1117/12.2185103