

Linear collider or Circular machine? Luminosity? Limit of the stored beam current? Number of Bunches?

Beam Dynamics and Technologies for Future Colliders, 21 February - 6 March 2018, Zurich, Switzerland Beam Dynamics and Technology on FCCee DUMMIE,S

Learn to:

Design a e ⁺/e - collider with a beam energy of 45 – 180 GeV, an overall length of 100 km and that can provide in parallel a Uminosity of L=10³⁴ cm⁻² s⁻¹ to two experiments .

Lower Energy? RF system? Arc structure? Dipole design? Quadrupole design?

Linear collider or circular machine?

[Source : http://tlep.web.cern.ch/content/machine-parameters](http://tlep.web.cern.ch/content/machine-parameters)

Luminosity

Assume beams are Gaussian in all directions and independent of each other

 2 1 1 1 2 2 2 2 *L cN N x y s ct x y s ct dxdydsdt x y s x y s* 1 2 4 *b x y N N fN L* Several parameters to determine collider Luminosity

For a collider
sume beams are Gare
er
 $2cN_1N_2 \cos^2 \frac{\phi}{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{N_1N_2fN_b}{4\pi\sigma_x\sigma_y}$
Several para
kN₂: number of particle
number of colliding bure
over, we can't get infinit N_1 & N_2 : number of particles per punch in beam 1 & 2 respectively N_b : number of colliding bunches per beam σ_x&σ_y: the transverse dimensions f: revolution frequency

```
Idealy, increase N1&N2, Nb and decrease \sigma_{\rm x}&\sigma_{\rm v}However, we can't get infinite Luminosity
```
Energy loss due to SR

 $c = 299792458$ m/s $\epsilon_0 = 8.85418782 \times 10^{-12} \text{ m}^{-3} \text{ kg}^{-1} \text{ s}^4 \text{ A}^2$ $\beta=1$ $q = 1.60217662 * 10^{-19}$ C $\gamma = 180 \times 10^9/(0.511 \times 10^6)$ $C = 100$ km circumference

From the magnet design lattice group, the proportion of bending in the 100 km is 66 $\%$. Therefore the bending radius is,

$$
\rho = \frac{C}{2\pi} * 0.66
$$
\n
$$
= 10.50 \text{ km}
$$
\n(1)

Energy loss per turn for a single particle:

$$
U_0 = \frac{4\pi}{3} \frac{r_e}{(mc^2)^3} \frac{E^4}{\rho}
$$

= 88.5 * 10³ $\frac{E[\text{GeV}^4]}{\rho[\text{m}]}$
= 8847.98 MeV

Power loss per turn for a single particle:

$$
P_{\gamma} = \frac{(q^2 c)}{6\pi\epsilon_0} \frac{(\beta^4 \gamma^4)}{\rho^2}
$$

= 6.4338 * 10⁻⁶ W

The total loss of power from synchrotron radiation should not exceed 50 MW, per beam.

$$
50 * 10^{6} = N \frac{(q^{2}c)}{6\pi\epsilon_{0}} \frac{(\beta^{4}\gamma^{4})}{\rho^{2}}
$$

$$
N = 7.77 * 10^{12}
$$
 (4)

Number of particles, $N = 7.77 * 10^{12}$ The total stored current:

$$
I_{total} = \frac{qNc}{C}
$$

= 3.73 mA (5)

A reasonable total number of particles per bunch was taken to be
 2×10^{11} (taken from LEP). Therefore the number of bunches should be,

$$
\frac{N}{N_b} = \frac{7.77 * 10^{12}}{2 * 10^{11}}
$$

$$
= 39 \text{ bunches}
$$

45 GeV: Limits

• Limit of stored current \bm{I} :

 $P = 88.46 \cdot$ E^4 ∙ I \boldsymbol{R}

Given in task:

- $P = 50$ MW overall synchotron radiation power
- $E = 45$ GeV beam energy
- $l_{\text{collider}} = 100 \text{ km}$ collider length
- $k_{\text{dipole}} = 0.66$ dipole coverage factor as assumption
- Radius of collider:

$$
\rightarrow R = k_{\text{dipole}} \cdot \frac{l_{\text{collider}}}{2\pi} 10.5 \text{ km}
$$

 $\bullet \rightarrow I = 1.45$ A

• Limit of number of bunches per beam N_b :

$$
I = N_{\rm b} N q f_{\rm rev}
$$

Given in task:

- $q = 1.602 \cdot 10^{-19}$ C charge of electron
- $f_{\text{rev}} = \frac{c}{l_{\text{rel}}^2}$ $l_{\rm collider}$ \approx 3 kHz revolution frequency
- $N < 2 \cdot 10^{11}$ number of particles per bunch as assumption

$$
\bullet \rightarrow N_{\rm b}=1.5\cdot 10^4
$$

45 GeV: RF system

- RF should at least compensate the energy loss by synchotron radiation
- RF Voltage V_{RF} :

$$
V_{RF} = \frac{P}{I}
$$

\n
$$
\rightarrow
$$
 V_{RF,min} (45 GeV) = 32.5 MV

- Assumption: Overvoltage of ~50% \rightarrow V_{RF} (45 GeV) = 50 MV
- Harmonic number:

$$
h = \frac{f_{\rm RF}}{f_{\rm rev}}
$$

Assumption: $f_{\rm RF} = 400$ MHz $\rightarrow h = 133426$

• Distance between bunches:

$$
\frac{h}{N_{\rm b}} \cdot \frac{1}{f_{\rm RF}} = 22.5 \text{ ns}
$$

• Number of cavities: with assumption input power of each cavity $P_{Input} \sim 500$ kW:

$$
\frac{P}{P_{Input}} = 100 \text{ cavities}
$$

• Voltage per cavity: $V_{\rm cavity} =$ $V_{\rm RF}$ 100 $=500$ kV

• Length of 1 cell of the cavity

$$
l_{\text{cavity}} = \frac{c}{2 f_{\text{RF}}} = 0.37 \text{ m}
$$

• Accelerating field in 1 cavity $E_{\text{Acc}} =$ $V_{\rm cavity}$ l_{cavity} $= 1.3$ **MV** \mathbf{m} \rightarrow low value (normally $E_{\text{Acc}}{\sim}10\;\frac{\text{MV}}{\text{m}}$)

• *Input*

- Our assumptions
- Consequences

Equilibrium emittance (1/2)

Balance between synchrotron radiation and quantum excitation

$$
\epsilon_{\mathsf{x}} = \frac{\sigma_{\mathsf{x}}^2}{\beta_{\mathsf{x}}} = \frac{C_q \gamma^2}{J_{\mathsf{x}} \rho} \langle \mathcal{H} \rangle
$$

$$
\gamma = E/E_0 \text{ for top energy: } \frac{180 \text{GeV}}{511 \text{keV}} = 3.52 \times 10^5
$$

 $L = 2\pi R \Rightarrow R = 15.9$ km

 $L \cdot F = 2\pi \rho \Rightarrow \rho = 10.5$ km (with a filling factor $F = 66 %$)

$$
\langle \mathscr{H} \rangle_{dipole} = \frac{1}{2\pi\rho} \int d\mathbf{s} \left(\gamma \eta^2 + 2\alpha \eta \eta' + \beta \eta'^2 \right)
$$

Equilibrium emittance (2/2)

 $\langle \mathcal{H} \rangle$ _{dipole} depends on the lattice...Fortunately Teng did the maths for us [1]

$$
\epsilon_{\mathsf{x}} = \frac{\sigma_{\mathsf{x}}^2}{\beta_{\mathsf{x}}} = \frac{C_q \gamma^2}{J_{\mathsf{x}} \rho} \langle \mathscr{H} \rangle = \frac{C_q}{J_{\mathsf{x}}} \gamma^2 \theta^3 F \frac{L}{\ell} \longrightarrow \frac{\epsilon_{\mathsf{x}} = 1 \, \text{nm}}{\epsilon_{\mathsf{y}} = 0.002 \cdot \epsilon_{\mathsf{x}} = 2 \, \text{pm}}
$$

[1] Fermilab, TM-1269-0102-000. "Minimising the Emittance in Designing the Lattice of an Electron Storage Ring"

Beta-function at the IP $(1/2)$

Considerations:

The more particles we have per bunch, the better it is for the luminosity But we need to be careful with the beam-beam force, as it might become un-manageable!

Synchrotron radiation power loss \leq 50 MW \longrightarrow Beam current 6 mA

1.18·10¹³ for 50 MW beam energy
\n
$$
L = \frac{N_1 N_2 n_B f_S}{4\pi \beta^* \epsilon}
$$
\n10³⁴

In approximation of flat beams for head-on collisions

$$
\xi = \frac{Nr_0\beta *}{4\pi\gamma\sigma^2}
$$

$$
\xi_{x,y} = \frac{N \cdot r_o \cdot \beta_{x,y}^*}{2\pi\gamma \sigma_{x,y}(\sigma_x + \sigma_y)}
$$

Beta-function at the IP (2/2)

• *Assumption n.1*: the size of the beam in the low-beta quadrupoles is the same in x and y direction to make the best possible use of the magnet aperture.

$$
\sigma_x = \sigma_y \quad \longrightarrow \quad \sqrt{\epsilon_x \beta_x} = \sqrt{\epsilon_y \beta_y}
$$

- *Assumption n.2* : beam-beam parameter $\xi_{v} = 0.12$ from LEP experience [2]
- *Assumption n.3*: horizontal beta function to be 1 m

$$
\beta(\mathbf{s}) = \beta^* + \frac{\mathbf{s}^2}{\beta^*} \qquad \mathbf{s} = 2 \,\mathsf{m}
$$
\n
$$
\beta^*_{y} + \frac{\mathbf{s}^2}{\beta^*_{y}} = \left(\frac{\epsilon_x}{\epsilon_y}\right) \beta^*_{x} + \frac{\mathbf{s}^2}{\beta^*_{x}}
$$
\n
$$
\beta^*_{y} = \frac{\mathbf{s}^2}{\frac{\epsilon_x}{\epsilon_y} \left(\beta^*_{x} + \frac{\mathbf{s}^2}{\beta^*_{x}}\right)}
$$

RESULTS

- Bunch population: 1.08⋅10¹¹
- Number of bunches: 109
- **Luminosity: 1.66∙10³⁴**
- Beta Function at the IP

$$
s = 2 m
$$

$$
\beta_x = 1 m
$$

$$
\beta_y = 1.6 mm
$$

[2] R. Assmann and K. Cornelis, "The Beam‐Beam Interaction in the Presence of strong Radiation Damping", CERN‐SL‐2000‐046 OP

Why FODO cell?

- **Highest filling factor to minimize SR**
	- \Box Power radiated by a beam of average current I

$$
P = 88.46 \frac{E^4[GeV] I[A]}{\rho[m]}
$$

 \square Bending radius

$$
\rho = \frac{C}{2\pi} F = 10.5 \text{km}
$$

usually F \approx 66% in
high energy rings

 Number of dipoles $\triangleleft L_{dip} = 20m$

$$
N_{dip} = \frac{L_{dip,TOT}}{L_{dip}} = 3300
$$

 \Box Bending angle

$$
\theta_{dip} = \frac{2\pi}{N_{dip}} = 1.9 \; mrad
$$

Arc lattice design for FCC-ee

 \triangleright Minimum emittance in FODO lattice

$$
\varepsilon_x = \frac{C_q}{J_x} \gamma^2 \theta^3 F \approx \begin{cases} 0.0537 \text{ nm} \ (45 \text{ GeV}) \\ 0.86 \text{ nm} \ (180 \text{GeV}) \end{cases}
$$

 \Box $C_q \approx 3.832 \cdot 10^{-13}$ m for electrons

 \Box Damping partition number $J_x \approx 1$ (no quadrupole component in dipole)

 $\Box F = \frac{1}{2\sin^2 2\pi r}$ $2sin\mu$ $5+3cos\mu$ $1 - cos\mu$ L_{FODO} $\frac{2FODO}{2L_{dip}} = 0.0625 L_{FODO}$ **Phase advance** $\mu = 90^{\circ}$

4

$$
\sigma_{\rm x} = \sqrt{\beta_x \varepsilon_{\rm x}} = \begin{cases} 0.073 \text{ mm (45 GeV)} \\ 0.3 \text{ mm (180 GeV)} \end{cases}
$$

$$
D_{max} = \frac{L_{FODO}^2}{\rho} \frac{1 + \frac{1}{2} \sin{\frac{\mu}{2}}}{4 \sin^2{\frac{\mu}{2}}} = 16 \text{ cm}
$$

$$
D_{min} = \frac{L_{FODO}^2}{\rho} \frac{1 - \frac{1}{2} \sin{\frac{\mu}{2}}}{4 \sin^2{\frac{\mu}{2}}} = 7.6 \text{ cm}
$$

Arc lattice design for FCC-ee

Saw tooth orbit

 A particular pattern for the horizontal beam position, due to the energy loss in the arcs and the energy gain in the RF sections

 \triangleright Energy loss per turn

$$
U_0 = 88.46 \frac{E^4[GeV]}{\rho[m]} = \begin{cases} 0.034 \text{ GeV} (45 \text{ GeV}) \\ 8.8 \text{ GeV} (180 \text{ GeV}) \end{cases}
$$

Orbit offset @ 180GeV

$$
\Delta x = D \frac{\Delta p}{p} = 4 \; mm
$$

Quadrupoles (1)

Stability Requirement:

Synchrotron radiation power emitted at 8σ in the quadrupole should not exceed the power emitted in dipoles.

- Beam size σ = 0.4mm
	- *provided by lattice design team:*
		- *hor. equilibrium emittance = 1nm*
		- *beta function arc = 100m*
		- *dispersion =16cm*

$$
\langle x^2 \rangle = \langle x_\beta^2 \rangle + D^2 \langle \delta^2 \rangle
$$

$$
\frac{\sigma_{\rm E}^2}{E^2}=C_{\rm q}\gamma^2\frac{\mathcal{I}_3}{J_s\mathcal{I}_2}=C_{\rm q}\gamma^2\frac{\mathcal{I}_3}{2\mathcal{I}_2+\mathcal{I}_{4x}+\mathcal{I}_{4y}}
$$

- energy spread from synch. radiation = 0.15%
- Minimum aperture $A = 2x (20 \sigma + x_{saw-tooth}) = 24 \text{mm}$
	- consider energy and orbit offsets to estimate sufficient aperture
		- orbit offset from saw-tooth effect = 4mm with 2 RF sections
		- orbit drifts
	- beam pipe thickness **8σ**

$$
\frac{\frac{1}{200}}{\frac{200}{200}}
$$

Quadrupole (2)

- Gradient = 6.9 T/m
- Peak pole field $= 0.14T$
- Strength
- Magnet Length = 3.5m
- Number of windings = 57

$$
B_y = g x
$$

$$
k = 0.3 \frac{g(T/m)}{p(GeV/c)}
$$

L = 1/f k

$$
g=\frac{2\mu_0 nI}{r^2}
$$

Thank you to all the members of the FCCee case study!