MADEIT

MAchine DEveloped for Interest in Top quarks

Bastian Haerer, Tobias Tydecks, Sergey Arsenyev, François-Xavier Nuiry, Jan Paszkiewicz

Design task

- Design a top factory yielding 10⁶ tops per year.
- Choice of p-p or p-pbar collisions.
- Normal conducting (max. dipole field = 1.8T)
- Max length 30 km
- Pile-up less than 2

Design choices

Design choices

Parameter table

Parameter	LHC	MADEIT
Collision energy per beam	7 TeV	1.75 TeV
Injection energy per beam	450 GeV	100 GeV
Dipole field	8 T	1.8 T
Circumference	27 km	30 km
Number of IPs	2 & 2	2
Beam current	0.58 A	1 A
Bunch intensity	1E11	7.8E10
Bunch spacing	25 ns	10 ns
β^*	0.55 m	2.9 m
Luminosity at each IP	1E34 cm ⁻² s ⁻¹	1.3E33 cm ⁻² s ⁻¹
Pile-up	27	1.65
Stored energy per beam	0.36 GJ	0.18 GJ
Normalized emittance	3.75 μ <i>m</i>	1.87 μ <i>m</i>

Final Focus

- $\beta_{*}^{*} = 2.93 \text{ m}$
- $L^* = 10.0 \text{ m}$
- Point to parallel focusing triplet:
- $k_{qff0} = k_{qff2} = 0.0218 \frac{1}{m^2}$ $\triangleq 127.28 \frac{T}{m}$ @ 1.75 TeV
- $k_{qff1} = -0.0390 \frac{1}{m^2}$ $\triangleq -227.43 \frac{T}{m} @ 1.75 \text{ TeV}$
- Superconducting final focus quads.

Dynamic aperture estimate (no field errors etc.)

Injector Chain

10 GeV H⁻ Linac

Parameter	Value
E _{max}	10.0 GeV
Normalised emittance	1.8 μ <i>m</i>
Max. gradient	30 MV/m
Length	800 m
Bunch intensity	1E9
Bunch frequency	400 MHz
Pulse length	150 μ <i>s</i>

100 GeV Booster

Parameter	Value
E _{max}	100 GeV
Circumference	1800 m
Bunch intensity	1E11
No. bunches	400
Harmonic number	600
RF Frequency	100 MHz

 4 linac bunches combined longitudinally into 1 booster bunch

- Booster ring filled over 25 turns in 1 linac pulse.
- 20 booster cycles to fill collider ring (8000 bunches)
- Ensure bunch length small enough to fit in 400 MHz RF in collider ring – harmonic cavities?

Bunch structure from linac:

Collective effects

Beam-beam tune shift
$$= -\frac{r_0 N}{4\varepsilon_n}$$

Space charge tune shift = $\frac{dQ_{bb}}{2\gamma^2}$

Resistive-wall instability:

$$N_{turns} = \frac{8\sqrt{\pi}m_{0}\gamma Qc}{e^{2}NM * Re\{Z_{y,eff}\}}$$
$$Re\{Z_{y,eff}\} = -\frac{Cc}{\pi b^{3}}\sqrt{\frac{\mu_{0}\rho}{2\omega}}$$
$$\omega = (1 - Q_{frac}) * 2\pi f_{rev}$$

 $dQ_{bb} = -0.016$ acceptable to avoid major resonances

Negligible

300 turns growth rate at injection – manageable by feedback