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Introduction

 What does it mean “Intelligent triggers”?

- Find clever ways to bypass new challenges

* Impossible to provide an exhaustive report

— Focus on pattern recognition in HEP
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Overview

The LHC luminosity in increasing
- More and more collisions per bunch crossing

Tracking is becoming more and more important for
triggering purpose

- Less pile-up dependent

- Trend: use tracking as early as possible (HLT — L1)

But tracking Is time consuming
- Not compatible with available latencies

* Look for smart tracking solutions
- Exploit parallelism: divide et impera

- Find smart algorithms to be
Implemented in CPU, GPU, FPGA, ASICs
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Luminosity
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- R[Hz] = L[cm™@s™] - 6[cm?]
Goal

- O(100) events/year for rare
channels

- L~ 10*cm=s™

C,, ~ 100 mbarn

- Rate = 1 GHz

But collisions @25ns — pile-up

- Rate =40 MHz

- At 10**cm™s™: 25 collisions per
bunch crossing

- At 10®*cm™s™: 250
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Trigger vs luminosity

* Thresholds already near scale of interesting processes
- Increasing them will reduce signal efficiency

 T/DAQ base requirements

— Maintain p; thresholds at ~ 20 GeV for single electron and
muon trigger to preserve acceptance for W, Z, tt, H

- Maintain system flexibility to be able to adapt to background
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Inner detectors
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Pixel and strips (ATLAS)

HV guard ring

Type0 connector —

* Pixels
- 90M channels
- 50 um x 250 um
- 4 layers, 3 end cap disks

decoupling D&
capacitors N

e Strips
- 6M channels

it

L dimensions: ~ 2 x 6.3 cm?
V7 Weght 2329 "

- 80 um (x 6.4 cm) sty 7" 4omrad

- Double plane w/ 40 mrad
stereo angle for 2nd coordinate

- 4 layers, 9 end cap disks
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Tracking

» Collisions produce particles
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Tracking

» Charged particles produce hits
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Tracking

e Usually
- there Is noise
— and pileup
W | B . [ ]
[ [ ] [ ] | B [ ]
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Tracking

» Challenge: reconstruct the tracks from the hits
— combinatorial problem
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At each bunch crossing
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Processing time

* Challenge: track finding in limited latency

— Number of hit combinations to be tested increases
like LN, where L is the luminosity and N the number
of silicon layers

 CPU processing time explodes with luminosity

— Tracking currently used at HLT but only on small
regions of interest, sometimes after calorimetric
preselection

2 hits 4 hits
1 candidate 4 candidates
| ] | ]
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Occupancy vs luminosity

 Number of hits per layer vs luminosity
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Divide et impera

 Reorganize the work load
Parallelize the work Iin independent lines
Decompose each line in serial steps (with selectlon)
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1% Data Formatting

» Divide you detector In regions
Inn and ¢

- with overlaps: each track should -

belong to only two regions

- data formatting: properly
reorganize channels to
properly feed next stages

* Process each region
iIndependently

- merging step needed
downstream

- E.g. to remove
duplicated tracks
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Then find the tracks

 Decompose tracking is separated steps
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Then find the tracks

 Decompose tracking is separated steps

* Pattern recognition
- Find track candidates (roads)

- Usually with lower resolution to minimize latency
« Trade off between efficiency and # of false positive
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Then find the tracks

 Decompose tracking is separated steps

* Pattern recognition
- Find track candidates (roads)

- Usually with lower resolution to minimize latency
« Trade off between efficiency and # of false positive

e Fit
LI e | 1 1 1 1]
- In every roads, fit of \\

the full resolution hits T 1 [T 1T 1
and keep the tracks

with best 2

L1 1 | IKI I
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Intelligent Triggering: steps

 Most approaches are based on those steps
- data formatting
- pattern recognition at low resolution
- track fitting
— duplicate removal
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Pattern recognition

» Goal: find smart algorithms able to select the
relevant patterns

- As fast as possible

- Producing an output rate sustainable by the next step
- With the maximum efficiency and lowest fake rate

» Basic principles
- Not all possible patterns are physically possible
- Use lower granulary input

 Hardware implementation
- &PY or GPU
- FPGA: e.g. Hough transform or Retina algorithm
- Custom ASICs: e.g. Associative Memories

Andrea.Negri@unipv.it Intelligent triggering
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GPU: Alice

 ALICE HLT uses a GPU-accelerated algorithm for
TPC tracking based on Cellular Automaton principle
and on Kalman filter

doi :10.1088/1742-6596/898/3/032030

- Up to 159 hits per trajectory in the drift chamber

- GPUs accelerated track reconstruction up to a factor
of 10 compared to CPU approach
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A I g o r I t m doi :10.1088/1742-6596/898/3/032030

» Separation of TPC into sectors

e Then

- Seeding: finds short track
candidates of 3 to 10 clusters using

a heuristics in a cellular automaton
- Track following: fits parameters / /f

and extrapolates the track through / X

TPC sector volume to find all hits
of the track segment

- Track merging: creates the final _
tracks by merging track segments = |
- Track fit: refit full track using R
Kalman filter - { R :

=t
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Hough transform

» Tracks identified via
out In a parameter s

- track candidates as

a “voting procedure” carried
pace

ocal maxima in that space

« Each hitinthe x-y p

ane transformed to a line In

the parameter space

- e.g. Xy~ Lo - 0, a/p;
- Hits from the same track — intersecting lines
- Suited for FPGA: histogramming approach

2 B
X

.-".\

3
b4
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Hough transform

« Suited for FPGA: Histogramming approach
- Divide the space into bins

— Fill the bins with data

- Find maxima

Topic of the secret
lab: tonight at 18.30

« Optimal bin size: trade off upstream HW vs downstream HW
- Usually followed by track fitting stage

« Advantages

- Fast: once bins are filled all tracks are found
— Easy to p; order candidates for further processing
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Retina

NUCLEAR
INSTRUMENTS
& METHODS
IN PHYSICS
RESEARCH

ELSEVIER Nuclear Instruments and Methods in Physics Research A 453 (2000) 425-429 SectionA

www.elsevier.nl/locate/nima

An artificial retina for fast track finding

Luciano Ristori

INFN, Sezione di Pisa, Via Livornese 1291, I-56010 S. Piero a Grado, Pisa, Italy
Accepted 21 June 2000

Abstract

A new approach is proposed for fast track finding in position-sensitive detectors. The basic working principle is
modeled on what is widely believed to be the low-level mechanism used by the eye to recognize straight edges. A number
of receptors are tuned such that each one responds to a different range of track orientations, each track actually fires
several receptors and an estimate of the orientation is obtained through interpolation. The feasibility of a practical device
based on this principle and its possible implementation using currently available digital logic is discussed. © 2000
Elsevier Science B.V. All rights reserved.

Keywords.: Trigger; Electronics; Neural networks
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Vi S U al CO rtex A. Abba et al 2015 JINST 10 C03008

 Inspired by mechanism of visual receptive fields
- line & edge detection areas of visual cortex

 There are neurons tuned to recognize a specific

shape on specific region of
the retina: receptive field

e All neurons react to a stimulus,
each with different strength

— proportional to how close the
shape of the stimulus is to the
shape for which neuron is tuned to

» the brain performs interpolation
between the responses of all neurons
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Retina

A. Abba et al 2015 JINST 10 C03008

* The algorithm introduces a grid of units: ‘cells’

- each corresponds to a specific track
pattern configuration, as: position and angle

- At each new observation (hlts)
each cell measures
correspondence between
its pattern and the input

Stimulus
l s

* Massively parallel
— no serialization until tracks are found

* Interpolation of analog responses ,gyaL
- saves internal storage Sl
- easy to deal with “missing layers”
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A simple case

A. Abba et al 2015 JINST 10 C03008

» Reconstruction of tracks w/o magnetic field using
single-coordinate parallel detector

- Streight lines
X=mz+q - 2D space parameter (m, q)

- Tune “receptive fields” to cover all values of (m, q)

S 8 p o
E. — ehits :‘i 8: -
< g
4— | | t | |
2 ¢ 3 |
0— i
C ‘ . SRR |
-2 [ ] . | ’
: : . I : ........ : R DAL I .....
-4 [ ] .4:— g1
u | Sas=snl
-'5_'_ T T "5_'— hT‘--*‘H T
- B l B R -EF—| | L Ll | T I
0 2 4 8 10 0 2 3 . L .
z[au] -
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Detector mapping

A. Abba et al 2015 JINST 10 C03008

 Discretize track parameter space in “cells”

- The center of each cell identifies a track in the real space
that intersects detector layers in “receptors”

— Each cellular unit corresponds to n (=number of layers)
cellular receptors (z,, x,) (r runs over the layers)

8 mrec eplors

X [a.u.]

-
&
.
-
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Detector mapping

A. Abba et al 2015 JINST 10 C03008

 Discretize track parameter space in “cells”

- The center of each cell identifies a track in the real space
that intersects detector layers in “receptors”

— Each cellular unit corresponds to n (=number of layers)

cellular receptors (z,, x,) (r runs over the layers)

E 8 ~ wreceptors
~ o

oy
2
0.
1 2
N

0 2 4 6 8 10

z[a.u]
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Detector mapping

A. Abba et al 2015 JINST 10 C03008

 Discretize track parameter space in “cells”

- The center of each cell identifies a track in the real space
that intersects detector layers in “receptors”

— Each cellular unit corresponds to n (=number of layers)
cellular receptors (z,, x,) (r runs over the layers)

8 mrec eplors

1 L | 1 | | | | |
0 2 4 6 8
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Basic principle

A. Abba et al 2015 JINST 10 C03008

* Once the space of relevant template patterns/tracks is
encoded into the device, for all the hits in the detector
layers (z,, x.), (due to real particles or noise)

- the response R;; of the cellular unit (m;, q;) is calculated

summing over all hits and layers

- R; represents the “excitation” of the receptive field
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The retina response

A. Abba et al 2015 JINST 10 C03008

[a.u

 Once all cells are excited and -
Rij calculated

- atrack is identified by a local SR A ) el e L . |
maximum in parameter space

- And a threshold can be applied

N = ) o
[T

o

© & A D
Illll

-1.0 -0.5 0.0 0.5 1.0

m m
Andrea.Negri@unipv.it Intelligent triggering 38

-1.0 -0.5 0.0 0.5 1.0




Parameter extraction

A A. Abba et al 2015 JINST 10 C03008

: : q
 Once local maxima, I.e.

tracks, are found
- parameter values are extracted

by performing the centroid of
the nearest cells

2 miwg 2wy
m = =
2 i Wij >_ij Wij

D waf|
» A subcell resolution is =
achieved by interpolation b
- Important since it allows a
coarse space granularity of ¢ I
— > limits the number of cells 0 gt

Am
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Associlative memories

436 Nuclear Instruments and Methods in Physics Research A278 (1989) 436440
North-Holland, Amsterdam

VLSI STRUCTURES FOR TRACK FINDING

Mauro DELL’ORSO

Dipartimento di Fisica, Universita di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy

Luciano RISTORI
INFN Sezione di Pisa, Via Vecchia Livornese 582a, 56010 S. Piero a Grado (PI), ltaly

Received 24 October 1988

We discuss the architecture of a device based on the concept of associative memory designed to solve the track finding problem,
typical of high energy physics experiments, in a time span of a few microseconds even for very high multiplicity events. This
“machine” is implemented as a large array of custom VLSI chips. All the chips are equal and each of them stores a number of
“patterns”. All the patterns in all the chips are compared in parallel to the data coming from the detector while the detector is being

read out.
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Comparison with pattern bank

 Comparison between predefined hit patterns
from track simulation with hit patterns from data

..............................
-------------------------------------------------

(pattern bank)

Predefined hit patterns

Andrea.Negri@unipv.it
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Comparison with pattern bank

 Comparison between predefined hit patterns
from track simulation with hit patterns from data

Predefined hit patterns
(pattern bank)
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Assoclative memories

e Content Accessible Memories

e CAM hit
- Store the data

— Compare input with stored bit

CFE

-{CAMDbIt ]
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Assoclative memories

e Content Accessible Memories L CAM bit |

« CAM Dhit — e
- Store the data "'- LI T F[FLayer
— Compare input with stored bit match

« CAM cell

- Array of 18 CAM bits
- Compare input w/ stored word

— Word: address/offset on
a detector layer
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Assoclative memories

» Content Accessible Memories [

« CAM bit . CARcall] |
- Store the data (LI == F[FLayer
- Compare input with stored bit T

« CAM cell
- Array of 18 CAM bits I "iiSOCiaﬂ:iMemory
- Compare input w/ stored word [J i {) L ‘ﬂ i
- Word: address/offset on == Jh? W,

a detector layer o L ! } - leﬂﬁ{P .

» Associative memory o ir i | i
- Union of 8 CAM cells le| T | Il%
- One for detector layers
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Assoclative memories

search lines matchlines
Ty
N % TN
Hrsmaich 1 1 1 Tt T |~
Patterns Hil Hok HiTH Hy Hy
match
”Hl’?-’.'lrf 1 1] [ ] T 1 T | D_ |:}| E lldd[l:!i"i
— (] — | — | — () | — Y -:JE _H]l
match =TT 1 u 1 m {1
— [} — — I — — I_ & - f — [ :!{' -
miimaich
11 Tt 1 1 1 y
— 1 — - {] —a — [] — — 1 — — I — \

matchlineg

ST § a0 =
search line drivers SENSE AMps

H itS searchdata=01101

) matchlines
Patterns stored word 0 "1 N
stored word 1
. @
. -E match
. Q | log,w location
bit
stored word w-2 R
stored word w-1 |-
—.searchlines
search data register

. A n bits
Hits search word
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AM example

* \Working principle example
— four layers of 8 bins

- NB: bins have reduced granularity compared to

detector resolution

r:z:L:L-r-T-lr-r

| S .

1 1 1
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Pattern bank: pattern 1

1.2345 0 7 3

2 @ Layer4

3 @ Layer3

4 @ Layer?

5 @ Layeri

ndrea

.Negri@unipv.it Intelligent triggering
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Pattern bank: pattern 4

123406 7 8

5 @ Layer4

4 @ Layer3

4 @ Layer?

3 @ Layer

ndrea
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Associative memory example

e Bank filled with 4 patterns

- 4 layers
Layer 1 Layer 2 Layer 3 Layer 4

[ WGMT:?]_. FF word/] "%FJ l word3 ™ o wordZJ—‘PTJ
l o

?'“P

Track Pattern 1

Track Pattern 2

FF

|

Track Pattern 3

sng inding

Track Pattern 4

HH [ D
4—#
Hg‘
e
T

BusT Bus?2 Bus3 Bus4
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Associative memory example

« Data (hits) injected in parallel on 4 buses
- Parallel comparison between hits and words in bank

I I Layer'l Layer2 Layer3 Layer4
:_: L : : L : T LT T (T I
I - ' 0101 Decoded hit channel position in the event is input (ch5=0101)
LU | WL
Track Pattern 1 %f | worﬂ]5 > rr word4*%d | wore [+ wordzl—'fl—gl
: ' N
Track Pattern 2 g e i ﬂifl'i o
|
l ; ol
Track Pattern 3 E e *leE Pyl 3 "1ee E
F= ' ‘ ¢ J 5
. D_
Track Pattern 4 ;,Ii R 4—'L.:fj 4*% 5 *er
| L o
Bus1 Bus2 Bus3 Bus4
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Associative memory example

« Data (hits) injected in parallel on 4 buses
- Parallel comparison between hits and words in bank

Track Pattern 1

Track Pattern 2

Track Pattern 3

Track Pattern 4

HH [ D

Layer 1 Layer 2 Layer 3 Layer 4
INIVHITL
]
[T . _
.[ word b 1P EF word/] 4@ ] word3 ¥ g wor dZJ—' ffj
| ¥ l [ .
= > "I‘ii ’? i
l I o
g I leE ] iiF 3 ™Er
: | Lo
L 3 4"Mer 4 "Lpf 5%
| T L
Bus1 Bus?2 Bus3 Bus4

sng inding
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Associative memory example

» Data (hits) injected in parallel on 4 buses

- Parallel comparison between hits and words in bank
Layer 1 Layer 2 Layer 3 Layer 4
0011

W
‘ _ LI _ .
] L] Dt ) (ot
' 5

ﬂ@ ol
| .

—™FF ® e BgIaE 3™ e

] ‘ I [
[ SMT 4—-@ awzff 5-,1F N

Bus1 Bus?2 Bus3 Bus4

(I
1]

i

:

Track Pattern 1

Track Pattern 2

Track Pattern 3

sng nding

Track Pattern 4

[ D]
4—#
4——@%
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Associative memory example

» Data (hits) injected in parallel on 4 buses

- Parallel comparison between hits and words in bank
- Layer 1 Layer 2 Layer 3 Layer 4

e ‘ et
I | | 0010
Track Pattern 1 % (word]5 wlas word4‘@ l WO@%JLF? word?)
v % I
Track Pattern 2| x—- maalzs e - o
e l i ? |
O
Track Pattern 3 E Bglss glss gl 3 ™ee %
= i i ¢ T
. D_
Track Pattern 4 % | 3 4—@ 4*{_? 5%
¢ [
Bus1 Bus?2 Bus3 Bus4
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Associative memory example

» Data (hits) injected in parallel on 4 buses

- Parallel comparison between hits and words in bank
Layer 1 Layer 2 Layer 3 Layer 4

%‘ﬁ [wvrdﬁil-* T wora4@ [ w3 ﬁj; word2_£
' 1
Track attern2§ H-T > iF ﬂ&% ’? EF
D
a— Bglis ] ¥ \ =
Track Pattern 3 E ,L I rI: Ff 3 e . -
Track Pattern 4 % | 3™ 4—@ 4*{_? 5 ® e
; .

Bus1 Bus?2 Bus3 Bus4
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Associative memory example

» Data (hits) injected In parallel on 4 buses

- Parallel comparison between hits and words in bank
Layer 1 Layer 2 Layer 3 Layer 4

TR
0011
% Ll e word/| FF- ] word3 ¥ e “’Ofdz
ﬂﬂ T
%_
Track Pattern 2 g i ™ ‘ﬂ% O ep
|
i I .
Track Pattern 3[— e e s 3k 5
=\ i i T
I Dﬁ
Track Pattern 4 % L SE 4—'@ 4*{_? 5+l
F o

Bus1 Bus? Bus3 Bus4
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Associative memory example

« Data (hits) injected in parallel on 4 buses
- Parallel comparison between hits and words in bank

Layer 1 Layer 2 Layer 3 Layer 4
L
0100
Trac % ( word %ﬂ‘" FF word/] 4@ ] ”:"‘L';':{% AE wordZ'—.l%
| ! ~
Track Pattern 2[ s 1 F L — O
S L i iﬁ |
D .
Track Pattern 3 E ®|FF iz —* 3 ™er %
I
Track Pattern 4 ;,iﬁ i 8%@ 4—'@ 4 ‘J@? S5 ™er
N

Bus1 Bus?2 Bus3 Bus4
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Associative memory example

» Data (hits) injected In parallel on 4 buses

- Parallel comparison between hits and words in bank

Track Pattern 2

Track Pattern 3

Track Pattern 4

i

Layer 1 Layer 2 Layer 3 Layer 4
LT
0101
( wordﬁhﬂ—b FF word/ —@ ] word3 i word2‘@
! ? 5
Pl Bl ‘Jl'% ’? FF
l : o
gl [ leE I Ff 3 ™er
{ l .
i 3%@ 4—@ 1] SR
v 7S
L

Bus1

Bus2 Bus3

Bus4

sng indingy
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Associative memory example

e Pattern matching is completes as soon as data
arrives in the buses
Layer 1 Layer 2 Layer 3 Layer 4

LT
[ word ;i"' FF word/] FE | l word3
T =

T

ABNRRRARY|
word2 *l[ %‘

7
D_.
Track Pattern 2 gl Bl ~ﬂ% O er
- l I Lo
Track Pattern 3 E _"F[ ® rlp: _"iiF 3 ™er ::,i:
H—

= ]
w
q
~
q
~
%
o
|
Y
1 ]
U/

Bus1 Bus? Bus3 Bus4
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Bank size

* Total number of patterns
depends on the “bin size”

- Wide bins: less patterns,
higher efficiency, more

fakes and workload for e

the fitting stage

- Small bins: more patterns,
less efficiency, less fakes

Number of Fits

0.8 - Too many roads
Low efficiency

and workload downstream Number of Roads
[ B
- ]
. ]
— [

Li|

2xLimit
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Bank size

e Standard bin size « Half bin size
- r-¢: 16 pixels, 22 strips - r-¢: 8 pixels, 11 strips

* At 90% track efficiency < At 90% track efficiency
- bank size: 100 M - bank size: 1200 M
- matched patterns per - matched patterns per

event: 342k event: 40 k

: — Coverage Coverage
3 — Efficiency 0.3 — Efficiency
o 0.2
0= 0.1:
0— .T. IR T M BT ST [ sA0f 0= ol sy aaldesy Y PR IRETRrul MR P .y [
0 200 400 600 800 1000 0 200 400 E00 800 1000 1200 1400 1500 1800 2000
Bank size (per region) Bank size (per region)
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Don't care bits

» Pattern matching resolution is crucial
- Size vs efficiency vs fakes (workload downstream)

] k"ll I"I | | | | ol |
] 'I.‘I | | | | I’ [
L 1 ‘lll 1 | | I' 1
L 1 'l T
| | ‘ ||
1 LA |
o = =
'\

3 low-resolution patterns

1 k"ll ll' 1 1 1 | . |
LW 1 ¥
ALl

LN}
[

7 high-resolution patterns
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Don't care bits

» Pattern matching resolution is crucial

- Size vs efficiency vs fakes (workload downstream)

 Don't care bits

- Allows to merge similar patterns in favored configurations

maintaining high-resolution & rejection power where needed

DC set
N /I —
r b\
[ | - = 1 11 | -
LY 1 r s
L 7
1 T

L L/

L 1 k‘l I"I 1 .l | 1
L 1 'I‘I 1 I’ 1 1
L 1 'Ili 1 I' 1
L |'Illl ', 1
L '.l.' 1 ‘ 1
“ 1 1
=3 = T
131 1 Ll
1\
3 low-resolution patterns
1 k‘li 1 ll 1 |
LW 1 ¥ &
il | F.d
ot
1

®
=
- —.-i"-
o {
e 1

LN}
[

7 high-resolution patterns

ri
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Ternary CAM

« Ternary CAM: add flexibility to the search

* Allows a third matching state of "X" or "Don't Care"
for one or more bits in the stored pattern word:

- one pattern matches various data words
* For each layer a “bin” Is identified by a number
stored in AM

- The DC bits can be user to OR neighborhood bins, which
differ only by few bits, without increasing the number of

patterns
10XX0
10000
* E.Q. 10010
- the ternary CAM In this example 10100

will match all the four search words 10110
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Ternary CAM

« Ternary CAM: add flexibility to the search

* Allows a third matching state of "X" or "Don't Care"
for one or more bits in the stored pattern word:
— one pattern matches various data words

* For each layer a “bin” Is identified by a number

stored in AM
- The DC bits can be user to OR neighborhood bins, which
differ only by few bits, without increasing the number of

patterns

e R
Eﬂ S “01070" selacts bin 10

13 “0001x” selects bins 2 or 3

0
8 9

“1x000” selects bins 16 or 24
18 19 20 21 22 23 “0x11x” selects bins 6,7,14, or 15

16 K
m 25 26 27 ---- \_“111xx” selects bins 28 to 31 J
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Advantages of AM

* hits compared w/ all stored patterns simultaneously
- Massive “parallelism” of pattern recognition

* Processing time is linear in the number of hits

- As soon as all the detected hits are loaded, the pattern
recognition will be completed

- For ATLAS run 2-3: overall average latency ~100 ps
 Avallability for optimization
- Majority logic (such as 7 out of 8) for hit inefficiency

PATTERM &
PATTERM 4
FATTERM 2
FATTERMN 1 FATTERM 3 FATTERN M ..o'
N (N
. LR L R X XN f_l)
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AM evolution

Design Patterns Pacl;age
Full custom | 700 nm 128 QFP
FPGA 350 nm 128 QFP
Std cells 180 nm | 100 mm*~ 5k | QFP
Std cells + 5
Full custom 65 nm 14 mm 8 k QFP
Std cells + 5
Full custom 65 nm % Mg 0:5 k QFF
+ IP blocks 12 mm? 3k | BGA
Std cells +
Full custom | 65 nm | 168 mm? 128 k | BGA
+ IP blocks
Std cells + 5 BGA,
Full custom il iy Rl SiP

SVT @CFD

SVT upgrade

FTK@Atlas

RD run 4

Andrea.Negri@unipv.it
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Fitting stage

» Pattern matching defines
roads to be refined

- fetch all the (few now)
hits In a road and fit them
to a helical track to measure
the track parameters precisely

* Fit can be done via a
linear approssimation
— track parameters (d,, @, 1/p,, z,, cotO)
related to hit positions by linear equations

— Multiplications w/ pre-computed constants

- Track fitting in FPGAs w/ many
Digital Signal Processors (DSPs): ~1 Gfits/s per FPGA

Andrea.Negri@unipv.it
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Track fitting

Hit coordinates
Track parameters at full resolution

d 9,1/p_, Z., cotb, x
pz — E Czlxl + q;

N Precalculated
» Model valid for small fiting constants

: . track
geometrical regions ‘ ' -
(sectors)

own fit constants:
coefficients of the
linear equations

- There are more than Sector #4711 :n?odtulrg
105 sectors used In m. guupsesstrip

the FTK system Sector #4635

I
I
I
- Each sector has its | | |
I
I
I
I

1
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Pattern bank creation

e Generate muon tracks via NTTTNTATITIITAT
) . \ \/ /
detector simulation 1 |\|\| | ||/Y\|| [TTA T

LITINTIANIATTTIITT
\ [/ \/
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Pattern bank creation

e Generate muon tracks via
detector simulation

* Create bins merging
continguous channels

- To reduce back size and
Increase efficiency

\ \ / /
HNEEEENN/AEEEEERV.AN
\/
|II\IIIII/Y\IIIII HEN
LITIN T IANIATTTTTT
\ [/ \/
\ \ / /
L\ | N/l | /|
/
| \\| LY 1 I//I |
| 1\ i/ \l /1 | |
\ / \/
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Pattern bank creation

e Generate muon tracks via N TN AT T T
detector simulation W
||||\|\||//|/\|\\||/r|||||||

e Create bins merging TN A |// |
continguous channels B Vi—a—

— To reduce back size and —y |///\\\| //|/ ]

Increase efficiency

* identify relevant patterns for
the bank

— Composed of bins
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At run time

H EEEE B EEEEEE BN
(T TTT N TTTTETTT]

HEE BN B B EEEEEEER

e Recelve hits from detector
- At full granularity
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At run time

 Receive hits from detector SRR R
i HE BEEEE EEEEE EEEE

- At full granularity
[(TT I T B B TTTTTT1

* Merge contiguous channels [ S S S N —
- Same bin size as AM I I S N S
- And properly rearrange data I O O O .
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At run time

 Receive hits from detector SRR R
i HE BEEEE EEEEE EEEE

- At full granularity
[(TT I T B B TTTTTT1

* Merge contiguous channels [ I s I S
- Same bin size as AM I I S I S N
- And properly rearrange data —

e Pattern matching
- Find roads
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At run time

e Recelve hits from detector
- At full granularity

* Merge contiguous channels
- Same bin size as AM
- And properly rearrange data

e Pattern matching
- Find roads

 Linear fits inside the roads
- With FPGA
- Data at full granularity

l ENEE B EEEEEE ER

HEE BN B B EEEEEEER
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Fast TracKer

 ATLAS upgrade under commissioning

— coprocessor dedicated to track reconstruction at high rate
(100 kHz) and short latency (~100 us)

« Computational load
subdivided in towers able
to work in parallel
- designed around Associative .

Memories (AM) and FPGAs &zt

- 8192 AM chips,
storing 1 billion patterns

- Custom VME and ATCA boards y

- Linearized track fitting performed in 2 consecutive stages
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Fast TracKer

» Operating after L1 and before HLT
— Provides HLT, at 100 kHz, with all tracks with p; > 1 GeV

Trigger DAQ

Event rates Data rates
Calo/ | | Pixel
{Muun} ISCTJ [OtherJ
40 MHz B OO0 I ATLAS Event
E Custorn (o) (e ) (e ) A 1.7(?)MB/25 ns
E FE FE FE | K3
Hardware Level 1 Accept 5
— A =
Poe) (o) (20)
\ 4 Y ROD ROD ROD v
100 kHz (RoiB ] = Y
~ 160 GB/s
l Vo(mn}‘{
FTK Readout System ]
~ 30k / =
Y = Fragments E
u;[[ Processing Unit -E ZSYG B/
Full event - ) s
0(10)

v [[ Data Logger 7
~1000Hz . | ~ 1500 MB/s
( CERN e — e o — 1

|___PermanentStorage __ |
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Fast TracKer: pipeline

 FTK Pipeline:

- data formatting — pattern matching —
track fitting 8 layers — track fitting 12 layers

Pattern matching limited
to 8 layers: 3 pixels + 5

FTK has a custom Data are geometrically distributed to S(;Ts.
clustering algorithm the processing units and compared to Hits compared at \/'
running on FPGAs existing track patterns. reduced resolution.

HLT

Full hit precision restored in

== = — good roads.
Good 8-layer tracks are extrapolated Fits reduced to scalar
products.

to additional layers, improving the fit
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FTK: boards

4 full-mesh

32 ATCA shelves

LS
'y

1

140117/, I7///, '.n'

NN
I/

" FTK DATA FLOW

/
{/

SN | 1A A
lHri"’
|

7

'y

Y%

8 VME crates

128 128

'y

((«

Y'Y

1 6U ATCA
shelf

raw hits
_____ clusters
.............. 8-layer tracks

------------------ 12-layer tracks
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FTK: boards
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Commissioning

e Fast TracKer
- Really heterogeneous system
- Many different expertises & skills: HW, FW, SW, network, etc

 Commissioning more demanding than R&D

— Your system must be fault tolerant
* You cannot power cycle the crate as in lab

— Tons of problems not seen in lab
- As soon as you fix a problem another one shows up at a
deeper level
 Joining a working system is even more challenging
- Pressure from the other subdetectors

- Physics analysis studies ongoing in parallel:
o difficult to be involved at 100%
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HEP trigger vs Neuroscience

« M. M. Del Viva, G. Punzi, and D. Benedetti.
Information and perception of meaningful patterns.
PloS one, 8(7):e69154, 2013

CATLAS
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A model for vision

* Goal
- Extract relevant information from a bulk of data
- Identify elements inside a picture
o Assumptions
- High data rate
— Limited output bandwidth
- |Input made by patterns

- The system can identify a
limited number of patterns

* Main principle
- Maximize the output entropy
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Algorithm

 [nput:
- pictures

* Assumption:

- patterns of 3x3 pixels

e |nitial reduction of
Information

- From color to grayscale or B/W

 TWO phases

- Training: identify relevant patterns in some training
pictures

- Pattern matching: reconstruct a picture using the
relevant patterns only and use it as input for selection
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Sliding windows scan

SCAN...

ndrea

.Negri@unipv.it Intelligent triggering
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Training: analisys

» Training: fill histogram :..
of log of probability £,
of patterns in n pictures |

- Some patterns more
popular than others

mero

40—
20

e To select the most e e
relevant patterns authors propose
a function based on entropy for unit of cost
— p:: propability of the given pattern
- N: number of patterns F(pr) = —pilogpi
the system can identify max(1/N, pi/W)
- W: avallable output bandwidth
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Entropy per unit cost

—pjlogp;
f' ) — NO | ff't J
(Pi) max(l/N,, P;'/ W) Egi?[;;'IGN
CONSTRAINED
I\
NO N_PATT ’ \
LIMITATION | \

Log(p)

Entropy / unit cost
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Training: pattern selection

* Histogram from training and selection function
- N=50,W=0.05

b
Entries 512

MNumero di pattern

| | | | | ! |
-14 12 -10 -8 -6 -4 -2 0
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Training: pattern selection

« Keep only the “best” N patterns
— according to the ranking (entropy for unit of cost)

b
Entries 512

MNumero di pattern
o
=

60
40

20

D L | | | | | ! |
-14 12 -10 -8 -6 -4 -2 0
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Training: pattern selection

* |.e. the function
— rejects patterns too rare or too popular
- selects patterns relevant for edge detection

b
Entries 512

Numero di pattern
=
L=

60

40

20

0

14 12 10 -8 -6 -4 e 0

In(p)
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Pattern matching

* Use the pattern bank to filter the image
- The second stage (the fitting) is done by our brains

 |f we use the selected pattern bank
— Object can be identified w/ small amount of data
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Pattern matching

« Use the pattern bank to filter the image
- The second stage (the fitting) is done by our brains

 |f we use a random pattern bank
— The brain don't recognize it (same amount of data)

T,
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Associlative memories

* Apply the model to HEP _.. .. . ’
- Five layers of pixels
— Use hits from collisions for training * *
- Select patterns according to the selection
function based on entropy per unit of cost —%ee
000

NS
o

W
(.

-
L

Number of patterns/freq unit
N
o

o

-4 -2 Logp

Andrea.Negri@unipv.it Intelligent triggering 94




* Apply the model to HEP
- Five layers of pixels
— Use hits from collisions for training

- Select patterns according to the selection
function based on entropy per unit of cost

» Selected pattern bank is similar to the
ones produced by simulation

- l.e. the pattern bank is
reproduced without any a priori
knowledge of physics and
detector geometry

- only via training with data an
the maximization of entropy In
a system with limited resources 4 2 Logp

Andrea.Negri@unipv.it Intelligent triggering 95

NS
o

W
(.

-
L

Number of patterns/freq unit
N
o

o




LHC upgrade

Full tracking mandatory to cope with pileup
- at HLT or L17

ATLAS

- Baseline HLT only
- AM based

« CMS

- Baseline at L1

- Multiple implementation options thanks to the
preselection provided by the new ID double layers

e LHC-b
- Moving to a triggerless architecture
— Option to use retina to not saturate the farm
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LHC-b
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Retina prototype

 LHC-b moving to a trigger less design
- Event processing at 40 MHz

- FPGA based tracker before Event Builder can help
to make online tracking affortable

- Prototype available

)
C [ T L
,9 10 » :*___.=_.~|—D—Q~—O—=|=—o—|—o—=‘—1.=:o_——o=l_._j::.:—0—=tf
g i Tracking layers
m — —
0.8— —
B —_ retina : +——  Separate trigger-DAQ path
5 — VELO+UT offline
0.6 —— — gen distribution _ switching

+«——— Custom switching network
delivers hits to appropriate cells

5 . i
B a T Data organized
04— — -
- - Y Y Y YYVYVYYVYY

network

by cell coordinates

—

i —— : Cellular » Blocks of cellular

0.2 — — Engines processors
++ . yYvYyV9YyYVY ‘r‘-l"l"r‘r‘l’ﬂ"r A 4 Trackﬁndingand

B | |_'_+—-—_.__,_|___ | Fitter I * parameter determination

085 0.5 1.0 15 2.0 l
pt  [GeV/c] ToDAQ
gen
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ATLAS

Baseline: single level HW trigger
- Level-0 (LO): muon and EM calorimeter trigger
- w/ option to evolve to a two-stage trigger

LO-only
- Run a LO trigger only, with full detector readout
- Run tracking as part of the Event Filter: EFTrack

LO/L1 option

— Move to using regional readout initiated by LO
- Add regional track triggering as an extra level. L1Track

L1Track and EFTrack based on the same HW

- Based on associative memory chips and FPGA for fitting
— Track p; down to 4 GeV for L1Track, 2 GeV for EFTrack
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ATLAS: options

 Baseline: LO-only (left), LO+L1 on the right
- EFTrack (HTT) and L1Track using same HW

I Inner Tracker I I Calorimeters l[ Muon System I [ Inner Tracker ] [ Calorimeters l [ Muon System ]
1 FH H . —— | TR = H
N O i i N |
v | i ¥ Y ¥ 2 S SR b ¥ v
i H i
v 315 ; l LoCalo J [ LOMuon pev o | l LoMuon ]
1 : o B
i : : i o I 1 -
1 i i : H S i i =
L | i N I 1
e : ; T I | :
W - : : g i P e, ¥
I b e A— i S R L ey R e (Global Trigger)
B ! [ Global Trigger : 0 O
olf e ... SR I . B
: : i Processor : : : : s Processor
YV, ¥, : v | 1 : ! :
i [ 1 1! & \_,_.)
[ Readout --—- cTP L wii. [ 1 : SR
l S Wiy Ly s
N «§--:= Trigger data (40 MHz) LICTP
[ Dataflow <~ = L0 accept signal e
Ly - +— Readout data (1 MHz) < Trigger data (40 MHz)
L] «--- rHTT data (10% data at 1 MHz) ‘l F LO accept signal
E *|I|:||w e i L1 accept signal
v <= =EF accept signal > pislg
Pmoassnrﬂ—:[ HTT ] Permanent 43 Output data (10 kHz) 4— Readout data (1 MHz)
Farm . Storage «(- - - Regional Readout Request

<::' ITk data (Max 4 MHz)

« - Readout data (800 or 600 kHz)
«- - rHTT data (10% data at 1 MHz)
<— gHTT data (100 kHz)

<4~ - EF accept signal

<:| Output data (10 kHz)

Permanent
Storage
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ATLAS: HTT

 Hardware Track Trigger
— Coprocessor for HLT or ... for L1

[ Network Switch ]

i

ATCA

HTT unit HTT unit

i —t—» Point-to-point optical - Links through
(=) Commodity network data e o OP ATCA backplane
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CMS L1 track: the challenge

» Single level HW trigger
- With tracking at L1

» Reconstruct trajectory of charged particles
- In an extremely dense environment: pileup ~ 140-200
- At an input rate of 40 MHz
- With ~ 4 us of latency
- O(10K) Tracks/Bunch crossing
- Tracker data ~ PB/s

» Challenge
- Reduce the rate to something bearable by readout
- At least 1 order of magnitude
- Maybe ... cutting on p,; before the readout
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L1 track: stubs

» Outer Tracker: layers/disks made of two modules of
closely spaced silicon sensors

- Charged particles produce pairs of hits: stubs

- Relative position of the two hits determines track p;
(assuming beam-line origin)

* On-detector electronics only transmit off stubs
consistent with p>2-3 GeV
el

- Reduces rate by factor ~ 10 ===

~92 cm? active area
Forr>40cm

“stub’.
\

Pixel + Strip sensors
Strips: 2.5¢cm x 100 ym
Pixels: 1.5 mm x 100 ym
P=5.0wW

~ 44 cm? active area
Forr>20cm

<100 uym (ﬂ)
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Readout

e Stubs read out at 40 MHz

- Full readout on L1 accept Completely new
system component

new sub-project

N Level-1 accept Ve 1 N

* | Ll | I I |
Full data

—— P Readout m - Lg::ﬁ,l

5~__| Stubs only * | »| CMS
o DAQ
. Outer Tracker Front-end \Tracker Back-end ' | CMS

@ 40 MHz - Bunch crossing
@ ~ 500 kHz — CMS Level-1 trigger
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CMS: L1 tracking

* The stub approach allow CMS to evalute three
different tracking options

1. Associative memory + FPGA
- tackle combinatoric with AM
- FPGA for parameter estimation

2. Projective binning
- Full FPGA
- Hough Transform

3. Combined tracklet builder & linearized track fit
- Full FPGA
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Option 2: projective binning

 Geometric processor sorts stubs in 36
subdivisions of the octant b5 4

e Patter recognition e s

- coarse Hough Transform ran il

on the stubs e-/
e Each hit transforms to a line | =

In @, q/P; space

e Hits from the same physical
track form intersecting lines

— duplicates are removed

Pss

* Track fitting
- To determine track parameters
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Option 3: tracklets

* Seed by forming tracklets

— Pairs of stubs in adjacent layers/disks
— Initial tracklet parameters from stubs + beamspot

constraint

* Project to other layers
and match with stubs

— Inside out & Inside In
— Calculate residuals

* FIt stubs
- Linearized 2 fit

« Remove duplicate tracks

A

~~
fitted track |

tracklet
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Summary

» Tracking in trigger is becoming more and more
Important in HEP

- But limited by CPU resources

 Various approaches based on parallelism
- Some ideas borrowed from other fields

« Common stages
— Division of the workload based on detector geometry
- Pattern Recognition at low granularity
- Track fitting

 HW implementations
- GPU, FPGA, ASICs (Associative Memories)
- Or combinations or the above
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