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Introduction
● What does it mean “Intelligent triggers”?

– Find clever ways to bypass new challenges

● Impossible to provide an exhaustive report

– Focus on pattern recognition in HEP 
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Overview
● The LHC luminosity in increasing

– More and more collisions per bunch crossing

● Tracking is becoming more and more important for 
triggering purpose
– Less pile-up dependent
– Trend: use tracking as early as possible  (HLT → L1)

● But tracking is time consuming
– Not compatible with available latencies

● Look for smart tracking solutions 
– Exploit parallelism: divide et impera
– Find smart algorithms to be 

implemented in CPU, GPU, FPGA, ASICs
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Luminosity
● Luminosity

– R[Hz] = L[cm-2s-1] · [cm2]

● Goal
– O(100) events/year for rare 

channels 
– L ~ 1034 cm-2s-1 

● pp ~ 100 mbarn
– Rate = 1 GHz

● But collisions @25ns → pile-up
– Rate = 40 MHz
– At 1034 cm-2s-1: 25 collisions per 

bunch crossing 
– At 1035 cm-2s-1: 250 
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Pile up ~10
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Pile up ~50
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Pile up O(100)
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Trigger vs luminosity
● Thresholds already near scale of interesting processes

– Increasing them will reduce signal efficiency

● T/DAQ base requirements
– Maintain pT thresholds at ~ 20 GeV for single electron and 

muon trigger to preserve acceptance for W, Z, tt, H
– Maintain system flexibility to be able to adapt to background
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Inner detectors
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Pixel and strips (ATLAS)

● Pixels
– 90M channels

– 50 m x 250 m
– 4 layers, 3 end cap disks

● Strips 
– 6M channels

– 80 m (x 6.4 cm)
– Double plane w/ 40 mrad 

stereo angle for 2nd coordinate
– 4 layers, 9 end cap disks
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Tracking
● Collisions produce particles
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Tracking
● Charged particles produce hits



Andrea.Negri@unipv.it Intelligent triggering 14

Tracking
● Usually 

– there is noise
– and pileup
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Tracking
● Challenge: reconstruct the tracks from the hits

– combinatorial problem
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At each bunch crossing
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Processing time
● Challenge: track finding in limited latency 

– Number of hit combinations to be tested increases 
like LN, where L is the luminosity and N the number 
of silicon layers

● CPU processing time explodes with luminosity
– Tracking currently used at HLT but only on small 

regions of interest, sometimes after calorimetric 
preselection  

2 hits
1 candidate

4 hits
4 candidates
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Occupancy vs luminosity
● Number of hits per layer vs luminosity
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Divide et impera
● Reorganize the work load 

– Parallelize the work in independent lines  
– Decompose each line in serial steps (with selection)  
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1st Data Formatting
● Divide you detector in regions 

in  and 
– with overlaps: each track should 

belong to only two regions
– data formatting: properly 

reorganize channels to 
properly feed next stages

● Process each region 
independently
– merging step needed 

downstream
– E.g. to remove

duplicated tracks
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Then find the tracks
● Decompose tracking is separated steps
● Pattern recognition

– Find track candidates (roads) 
– Usually with lower resolution to minimize latency

● Trade off between efficiency and # of false positive

● Fit 
– In every roads, fit of 

the full resolution hits
and keep the tracks 
with best 2 
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Intelligent Triggering: steps
● Most approaches are based on those steps

– data formatting
– pattern recognition at low resolution
– track fitting
– duplicate removal
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Pattern recognition
● Goal: find smart algorithms able to select the 

relevant patterns  
– As fast as possible
– Producing an output rate sustainable by the next step
– With the maximum efficiency and lowest fake rate

● Basic principles
– Not all possible patterns are physically possible
– Use lower granulary input 

● Hardware implementation
– CPU or GPU 
– FPGA: e.g. Hough transform or Retina algorithm
– Custom ASICs: e.g. Associative Memories 
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GPU: Alice
● ALICE HLT uses a GPU-accelerated algorithm for 

TPC tracking based on Cellular Automaton principle 
and on Kalman filter
– Up to 159 hits per trajectory in the drift chamber
– GPUs accelerated track reconstruction up to a factor 

of 10 compared to CPU approach 

doi :10.1088/1742-6596/898/3/032030 
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Algoritm
● Separation of TPC into sectors
● Then

– Seeding: finds short track 
candidates of 3 to 10 clusters using 
a heuristics in a cellular automaton

– Track following: fits parameters 
and extrapolates the track through  
TPC sector volume to find all hits 
of the track segment

– Track merging: creates the final 
tracks by merging track segments

– Track fit: refit full track using  
Kalman filter

doi :10.1088/1742-6596/898/3/032030 
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Hough transform
● Tracks identified via a “voting procedure” carried 

out in a parameter space
– track candidates as local maxima in that space

● Each hit in the x-y plane transformed to a line in 
the parameter space
– e.g.: x,y →  r,  → 0, q/pT

– Hits from the same track → intersecting lines
– Suited for FPGA: histogramming approach



Andrea.Negri@unipv.it Intelligent triggering 29

Hough transform

Topic of the secret 
lab: tonight at 18.30

● Suited for FPGA: Histogramming approach
– Divide the space into bins
– Fill the bins with data
– Find maxima

● Optimal bin size: trade off upstream HW vs downstream HW 
– Usually followed by track fitting stage

● Advantages
– Fast: once bins are filled all tracks are found
– Easy to pT order candidates for further processing
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Retina
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Visual cortex
● Inspired by mechanism of visual receptive fields

– line & edge detection areas of visual cortex 

● There are neurons tuned to recognize a specific 
shape on specific region of 
the retina: receptive field 

● All neurons react to a stimulus, 
each with different strength
– proportional to how close the 

shape of the stimulus is to the 
shape for which neuron is tuned to 

● the brain performs interpolation 
between the responses of all neurons

A. Abba et al 2015 JINST 10 C03008
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Retina
● The algorithm introduces a grid of units: ‘cells’

– each corresponds to a specific track 
pattern configuration, as: position and angle 

– At each new observation (hits), 
each cell measures 
correspondence between 
its pattern and the input

● Massively parallel 
– no serialization until tracks are found

● Interpolation of analog responses
– saves internal storage
– easy to deal with “missing layers”

A. Abba et al 2015 JINST 10 C03008
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A simple case
● Reconstruction of tracks w/o magnetic field using 

single-coordinate parallel detector 
– Streight lines

x = mz + q  → 2D space parameter (m, q)
– Tune “receptive fields” to cover all values of (m, q)

A. Abba et al 2015 JINST 10 C03008
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Detector mapping
● Discretize track parameter space in “cells”

– The center of each cell identifies a track in the real space 
that intersects detector layers in “receptors”

– Each cellular unit corresponds to n (=number of layers) 
cellular receptors (zr, xr) (r runs over the layers)

A. Abba et al 2015 JINST 10 C03008
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Basic principle
● Once the space of relevant template patterns/tracks is 

encoded into the device, for all the hits in the detector 
layers (zr, xr)k (due to real particles or noise)

– the response Rij of the cellular unit (mi, qj) is calculated 
summing over all hits and layers

– Rij represents the “excitation” of the receptive field

A. Abba et al 2015 JINST 10 C03008
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The retina response
A. Abba et al 2015 JINST 10 C03008

● Once all cells are excited and 
Rij calculated 
– a track is identified by a local 

maximum in parameter space
– And a threshold can be applied
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Parameter extraction
● Once local maxima, i.e. 

tracks, are found 
– parameter values are extracted 

by performing the centroid of 
the nearest cells

● A subcell resolution is 
achieved by interpolation
– Important since it allows a 

coarse space granularity 
– → limits the number of cells

A. Abba et al 2015 JINST 10 C03008
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Associative memories
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Comparison with pattern bank
● Comparison between predefined hit patterns 

from track simulation with hit patterns from data  

1

2

3

4
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● Comparison between predefined hit patterns 
from track simulation with hit patterns from data  

Found

Found

1

2

3

4

1 3

Comparison with pattern bank
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Associative memories
● Content Accessible Memories
● CAM bit

– Store the data
– Compare input with stored bit

● CAM cell
– Array of 18 CAM bits
– Compare input w/ stored word
– Word: address/offset on 

a detector layer

● Associative memory
– Union of 8 CAM cells
– One for detector layers

Associative Memory
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Associative memories

Patterns

Patterns

Hits

Hits
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AM example
● Working principle example

– four layers of 8 bins
– NB: bins have reduced granularity compared to 

detector resolution
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Pattern bank: pattern 1 
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Pattern bank: pattern 4 
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Associative memory example
● Bank filled with 4 patterns 

– 4 layers
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● Data (hits) injected in parallel on 4 buses 
– Parallel comparison between hits and words in bank

Associative memory example
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● Pattern matching is completes as soon as data 
arrives in the buses 

Associative memory example
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Bank size
● Total number of patterns 

depends on the “bin size”
– Wide bins: less patterns, 

higher efficiency, more 
fakes and workload for 
the fitting stage

– Small bins: more patterns, 
less efficiency, less fakes 
and workload downstream 
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Bank size
● Standard bin size

– r-: 16 pixels, 22 strips

● At 90% track efficiency
– bank size: 100 M
– matched patterns per 

event: 342k

● Half bin size
– r-: 8 pixels, 11 strips

● At 90% track efficiency
– bank size: 1200 M
– matched patterns per 

event: 40 k
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Don't care bits
● Pattern matching resolution is crucial

– Size vs efficiency vs fakes (workload downstream)

● Don't care bits
– Allows to merge similar patterns in favored configurations 

maintaining high-resolution & rejection power where needed
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Ternary CAM
● Ternary CAM: add flexibility to the search
● Allows a third matching state of "X" or "Don't Care" 

for one or more bits in the stored pattern word: 
– one pattern matches various data words

● For each layer a “bin” is identified by a number 
stored in AM
– The DC bits can be user to OR neighborhood bins, which 

differ only by few bits, without increasing the number of 
patterns

● E.g.: 
– the ternary CAM in this example 

will match all the four search words

10XX0
10000
10010 
10100 
10110 
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Advantages of AM 
● hits compared w/ all stored patterns simultaneously

– Massive “parallelism” of pattern recognition

● Processing time is linear in the number of hits
– As soon as all the detected hits are loaded, the pattern 

recognition will be completed
– For ATLAS run 2-3: overall average latency ~100 μs

● Availability for optimization
– Majority logic (such as 7 out of 8) for hit inefficiency
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AM evolution

SVT @CFD

SVT upgrade

FTK@Atlas

RD run 4
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Fitting stage
● Pattern matching defines

roads to be refined
– fetch all the (few now) 

hits in a road and fit them 
to a helical track to measure 
the track parameters precisely

● Fit can be done via a 
linear approssimation
– track parameters (d0, φ, 1/pT, z0, cotθ) 

related to hit positions by linear equations
– Multiplications w/ pre-computed constants
– Track fitting in FPGAs w/ many 

Digital Signal Processors (DSPs): ~1 Gfits/s per FPGA
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Track fitting

● Model valid for small 
geometrical regions 
(sectors)
– Each sector has its 

own fit constants: 
coefficients of the 
linear equations

– There are more than 
105 sectors used in 
the FTK system

Hit coordinates
at full resolution

Precalculated 
fitting constants

Track parameters
d

0
 ,φ,1/p

T
, z

0
, cotθ, 2
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● Generate muon tracks via 
detector simulation

● Create bins merging 
continguous channels
– To reduce back size and 

increase efficiency

● identify relevant patterns for 
the bank
– Composed of bins

Pattern bank creation
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● Receive hits from detector 
– At full granularity

 

● Merge contiguous channels
– Same bin size as AM
– And properly rearrange data

 

● Pattern matching
– Find roads

● Linear fits inside the roads
– With FPGA
– Data at full granularity

At run time
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Fast TracKer
● ATLAS upgrade under commissioning

– coprocessor dedicated to track reconstruction at high rate 
(100 kHz) and short latency (~100 μs)

– Efficiency ~ 93% for pT > 1 GeV, |η|<2.5

● Computational load 
subdivided in towers able 
to work in parallel
– designed around Associative 

Memories (AM) and FPGAs
– 8192 AM chips, 

storing 1 billion patterns
– Custom VME and ATCA boards
– Linearized track fitting performed in 2 consecutive stages
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Fast TracKer
● Operating after L1 and before HLT

– Provides HLT, at 100 kHz, with all tracks with pT > 1 GeV 
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Fast TracKer: pipeline
● FTK Pipeline: 

– data formatting → pattern matching → 
track fitting 8 layers→ track fitting 12 layers
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FTK: boards
32

128 128

32

2
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Commissioning
● Fast TracKer

– Really heterogeneous system
– Many different expertises & skills: HW, FW, SW, network, etc

● Commissioning more demanding than R&D
– Your system must be fault tolerant

● You cannot power cycle the crate as in lab

– Tons of problems not seen in lab
– As soon as you fix a problem another one shows up at a 

deeper level

● Joining a working system is even more challenging 
– Pressure from the other subdetectors
– Physics analysis studies ongoing in parallel: 

● difficult to be involved at 100%
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HEP trigger vs Neuroscience
● M. M. Del Viva, G. Punzi, and D. Benedetti. 

Information and perception of meaningful patterns. 
PloS one, 8(7):e69154, 2013
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A model for vision
● Goal

– Extract relevant information from a bulk of data 
→ identify elements inside a picture

● Assumptions
– High data rate
– Limited output bandwidth 
– Input made by patterns
– The system can identify a 

limited number of patterns

● Main principle
– Maximize the output entropy 
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Algorithm
● Input: 

– pictures

● Assumption: 
– patterns of 3x3 pixels 

● Initial reduction of 
information
– From color to grayscale or B/W

● Two phases
– Training: identify relevant patterns in some training 

pictures
– Pattern matching: reconstruct a picture using the 

relevant patterns only and use it as input for selection



Andrea.Negri@unipv.it Intelligent triggering 86

Sliding windows scan
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Training: analisys
● Training: fill histogram

of log of probability
of patterns in n pictures
– Some patterns more 

popular than others

● To select the most
relevant patterns authors propose
a function based on entropy for unit of cost
– pi: propability of the given pattern

– N: number of patterns  
the system can identify

– W: available output bandwidth
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Entropy per unit cost
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Training: pattern selection
● Histogram from training and selection function

– N = 50, W = 0.05 



Andrea.Negri@unipv.it Intelligent triggering 90

● Keep only the “best” N patterns 
– according to the ranking (entropy for unit of cost) 

Training: pattern selection
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● i.e. the function
– rejects patterns too rare or too popular
– selects patterns relevant for edge detection   

Training: pattern selection
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Pattern matching
● Use the pattern bank to filter the image

– The second stage (the fitting) is done by our brains

● If we use the selected pattern bank
– Object can be identified w/ small amount of data 
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Pattern matching
● Use the pattern bank to filter the image

– The second stage (the fitting) is done by our brains

● If we use a random pattern bank
– The brain don't recognize it (same amount of data)
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Associative memories
● Apply the model to HEP

– Five layers of pixels
– Use hits from collisions for training 
– Select patterns according to the selection 

function based on entropy per unit of cost

● Selected pattern bank is similar to the 
ones produced by simulation
– i.e. the pattern bank is 

reproduced without any a priori 
knowledge of physics and 
detector geometry

– only via training with data an 
the maximization of entropy in 
a system with limited resources Log p
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LHC upgrade
● Full tracking mandatory to cope with pileup

– at HLT or L1?

● ATLAS
– Baseline HLT only
– AM based

● CMS 
– Baseline at L1
– Multiple implementation options thanks to the 

preselection provided by the new ID double layers

● LHC-b
– Moving to a triggerless architecture
– Option to use retina to not saturate the farm
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LHC-b
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Retina prototype
● LHC-b moving to a trigger less design

– Event processing at 40 MHz
– FPGA based tracker before Event Builder can help 

to make online tracking affortable
– Prototype available
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ATLAS



Andrea.Negri@unipv.it Intelligent triggering 100

ATLAS
● Baseline: single level HW trigger 

– Level-0 (L0): muon and EM calorimeter trigger
– w/ option to evolve to a two-stage trigger

● L0-only 
– Run a L0 trigger only, with full detector readout 
– Run tracking as part of the Event Filter: EFTrack

● L0/L1 option
– Move to using regional readout initiated by L0 
– Add regional track triggering as an extra level: L1Track

● L1Track and EFTrack based on the same HW
– Based on associative memory chips and FPGA for fitting
– Track pT down to 4 GeV for L1Track, 2 GeV for EFTrack 
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ATLAS: options
● Baseline: L0-only (left), L0+L1 on the right

– EFTrack (HTT) and L1Track using same HW
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ATLAS: HTT
● Hardware Track Trigger

– Coprocessor for HLT or … for L1 
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CMS
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CMS L1 track: the challenge
● Single level HW trigger

– With tracking at L1

● Reconstruct trajectory of charged particles
– In an extremely dense environment: pileup ~ 140-200
– At an input rate of 40 MHz
– With ~ 4 μs of latency 
– O(10K) Tracks/Bunch crossing
– Tracker data ~ PB/s

● Challenge
– Reduce the rate to something bearable by readout
– At least 1 order of magnitude
– Maybe … cutting on pT before the readout 
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L1 track: stubs
● Outer Tracker: layers/disks made of two modules of 

closely spaced silicon sensors
– Charged particles produce pairs of hits: stubs 
– Relative position of the two hits determines track pT 

(assuming beam-line origin)

● On-detector electronics only transmit off stubs 
consistent with pT>2-3 GeV
– Reduces rate by factor ~ 10

1-4 mm
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Readout
● Stubs read out at 40 MHz

– Full readout on L1 accept



Andrea.Negri@unipv.it Intelligent triggering 107

CMS: L1 tracking
● The stub approach allow CMS to evalute three 

different tracking options

1. Associative memory + FPGA
– tackle combinatoric with AM
– FPGA for parameter estimation

2. Projective binning
– Full FPGA 
– Hough Transform

3. Combined tracklet builder & linearized track fit
– Full FPGA



Andrea.Negri@unipv.it Intelligent triggering 108

Option 2: projective binning
● Geometric processor sorts stubs in 36 

subdivisions of the octant
● Patter recognition

– coarse Hough Transform ran 
on the stubs

● Each hit transforms to a line 
in φ, q/PT  space

● Hits from the same physical 
track form intersecting lines 

– duplicates are removed

● Track fitting 
– To determine track parameters
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Option 3: tracklets
● Seed by forming tracklets

– Pairs of stubs in adjacent layers/disks
– Initial tracklet parameters from stubs + beamspot 

constraint

● Project to other layers 
and match with stubs
– Inside out & inside in
– Calculate residuals

● Fit stubs
– Linearized 2 fit

● Remove duplicate tracks
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Summary
● Tracking in trigger is becoming more and more 

important in HEP
– But limited by CPU resources

● Various approaches based on parallelism
– Some ideas borrowed from other fields

● Common stages
– Division of the workload based on detector geometry 
– Pattern Recognition at low granularity
– Track fitting

● HW implementations
– GPU, FPGA, ASICs (Associative Memories)
– Or combinations or the above
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