
Gianluca Lamanna (Univ. of Pisa & INFN)

“Secret Lab: GPU programming
for HEP”

Prerequisites

A little bit of C/C++

You don’t need experience in parallel
programming, GPU and computer
graphics.

2

CPU

Multilevel and
Large Caches

Convert long latency
memory access

Branch prediction
To reduce latency in
branching

Powerful ALU

Memory
management

Large control part

3

CPU: latency

oriented design

GPU

SIMT (Single
instruction Multiple
Thread) architecture

SMX (Streaming Multi
Processors) to execute
kernels

Thread level
parallelism

Limited caching

Limited control

No branch prediction,
but branch predication

4

GPU: throughput

oriented design

Serial Programming

The problem is
subdivided in
sequential tasks
(instructions)

Only one
instruction in
each moment

Often task N
depends on the
result of task N-1

5

PROBLEM

TASK #3

TASK #2

TASK #1

TASK #0

Processor

Parallel programming

The tasks are
independent
at algorithimic
level.

Each task is
processed
independently
on different
processors

6

PROBLEM

TASK #3 TASK #0 TASK #1 TASK #2

Processor Processor Processor Processor

Several types of parallelism

Single Instruction Multiple Data (SIMD)
One scheduler for multiple cores.

Different cores execute the same instruction at the same
time on different data stream,

Multiple Instruction Single Data (MISD)
Different processors execute different instructions on the
same data stream

Multiple Instruction Multiple Data (MIMD)
Each processor execute its own instruction on its own data
set.

Single Instruction Multiple Threads (SIMT)
SIMD combined with multithreading

7

Several types of parallelism

Single Instruction Multiple Data (SIMD)
One scheduler for multiple cores.

Different cores execute the same instruction at the same
time on different data stream,

Multiple Instruction Single Data (MISD)
Different processors execute different instructions on the
same data stream

Multiple Instruction Multiple Data (MIMD)
Each processor execute its own instruction on its own
data set.

Single Instruction Multiple Threads (SIMT)
SIMD combined with multithreading

8

GPUs are SIMT processors!

Is it always convenient to use parallel programming?

9

Is it always convenient to use parallel programming?

10

Heterogenous Computing

A winning application use both
CPU and GPU

CPU for sequential part, where latency
matters (CPU can be faster at least x10
than GPU for sequential code)

GPU for parallels part where throughput
wins (GPU can be faster at least x100 than
CPU for parallel core)

11

Our system: GTX750

12

GTX750: for gamers

Kepler architecture

512 cores

4 SM (Streaming
Multiprocessors)

1 Tflops in single
precision

2 GB Ram

80 Gb/s bandwidth

PCIe 3.0 x16

TESLA P100

13

TESLA: for computing

Pascal architecture

3584 cores

60 SM (Streaming
Multiprocessors)

9 Tflops in single
precision

12-16 GB Ram

549 Gb/s bandwidth
(or 732 Gb/s)

PCIe 3.0 x16 (or
NVLINK)

TESLA V100

14

TESLA: for computing

Volta architecture

5120 cores

84 SM (Streaming
Multiprocessors)

15 Tflops in single
precision

16 GB Ram

900 Gb/s bandwidth

PCIe 3.0 x16 (or
NVLINK)

How to program GPU?

15

Applications

Libraries Programming

Languages

Compiler

Directives

GPU Accelerated Libraries

Easy to use,
High Quality

“plug & play”

Several library
for several
applications

Several
examples in
physics

16

NVIDIA

Video

Encode

Thrust: Example

17

thrust::device_vector<float> deviceInput1(inputLength);

thrust::device_vector<float> deviceInput2(inputLength);

thrust::device_vector<float> deviceOutput(inputLength);

thrust::copy(hostInput1, hostInput1 + inputLength,

 deviceInput1.begin());

thrust::copy(hostInput2, hostInput2 + inputLength,

 deviceInput2.begin());

thrust::transform(deviceInput1.begin(),

deviceInput1.end(), deviceInput2.begin(),

deviceOutput.begin(),

 thrust::plus<float>());

GPU Directives

Define a
programming model
to program
accelerators without
the complexity
associated with the
GPU programming

Easy to use

Very easy to
integrate in already
done serial code

Hardware
independent:
portable code

 18

OPEN

HMPP

OpenACC: example

19

#pragma acc parallel loop

copyin(input1[0:inputLength],input2[0:

inputLength]),

 copyout(output[0:inputLength])

 for(i = 0; i < inputLength; ++i) {

 output[i] = input1[i] +

input2[i];

 }

GPU Programming Languages

Performance:
programmers control
every computing step

Flexible: The
computation does not
need to fit into a
limited set of library
patterns or directive
types

Complex: the
complexity is higher
with respect to
libraries and
directives.

20

pyCUDA

CUDA toolkit

NVIDIA provides:
NVCC: compiler for device+host, device, host
applications

CUDA MEMCHECK: debugger for memory

CUDA-GDB: parallel debugger

Nvvp, nvprof: Profilers

Nsight: An IDE platform

Tons of examples

21

https://developer.nvidia.com/cuda-downloads

https://docs.nvidia.com/cuda/

Cuda Model and Processing Flow

22

What is CUDA?
It is a set of C/C++
extensions to enable the
GPGPU computing on
NVIDIA GPUs

Dedicated APIs allow to
control almost all the
functions of the graphics
processor

Three steps:
1) copy data from Host
to Device

2) copy Kernel and
execute

3) copy back results

22

Software and hardware

CUDA is a realization of the heterogeneous computing
paradigm: CPU for serial part and GPU for parallel
part

23

CUDA maps the hardware
architecture to high level
software programming

HOST: CPU

DEVICE: GPU

Structure of a Program

24

MAIN - HOST

KERNEL - DEVICE

COPY DATA HD

COPY DATA DH

LAUNCH KERNEL

Kernel call

25

mykernel<<<N,M>>>()

Number of threads

per block

Number of

Blocks

Keep in mind: the
number of threads per
block is limited

deviceQuery & bandwidthTest

26

Hello World!

Host “Hello World!”

Parallel “Hello World!”

27

Vector Sum

Serial code

28

GPU code using blocks

VecAdd with Blocks

threadIdx.x, blockIdx.x

cudaMalloc(), cudaMemcpy(),
cudaFree()

29

We are using a
big grid
(1048576), but
each block uses
only one thread

A block doesn’t
correspond exactly
to on SM

30

Very inefficient

The GT750 has
a limited
number of
Multiprocessors
(4)

Roughly
speaking: only
4 threads are
concurrent

31

With threads

Factor 500! Suspect…  printout,

cuda-gdb, error checking

32

Thread index

The right way is to use blocks &
threads

… with the correct indexing

33

Threads , Blocks & Warps

Threads and Blocks are not equivalent
The main difference is that the threads can
“communicate”

The instruction set is pipelined in the
hardware  the most basic unit of

SIMD scheduling is a “Warp”

A warp consists of 32 threads

If the number of threads is multiple of
32 then no divergence

The warp is also the natural unit to
access memory

34

35

The memory hierarchy is fundamental in
GPU programming

Most of the memory managing and data
locality is left to the user

Unified Address Space

Global Memory
On board, relatively slow, lifetime of the application,
accessible from host and device

Shared memory/registers
On Chip, very fast, lifetime of blocks/threads,
accessible from kernel only

36

37

Variab le dec la ra tion Memory Sc ope Lifetime

 int Loc a lVar; reg ister thread thread

__devic e__ __shared__ int SharedVar; shared b loc k b loc k

__devic e__ int Globa lVar; g loba l g rid app lic a tion

__devic e__ __c onstant__ int ConstantVar; c onstant g rid app lic a tion

Automatic variables
reside in a register

Except per-thread arrays
that reside in global
memory

Matrix Multiplication: naive implementation

One thread to compute one element of matrix C. Each
thread loads one row of matrix A and one column of
matrix B from global memory, and store the result
back to matrix C in the global memory.

Number of operations: MxNxKx2

Number of memory access: MxNxKx2 words 

4xMxNxKx2 bytes

Computation to memory ratio = ¼  memory

bounded 38

Matrix multiplication: tiled implementation

One thread block computes one tile of matrix C. One thread in
the thread block computes one element of the tile.

 In each iteration, one thread block loads one tile of A and one
tile of B from global memory to shared memory, performs
computation, and stores temporal result of C in register. After all
the iteration is done, the thread block stores one tile of C into
global memory.

If the tile size is B, the amount of global memory access is
2*M*N*K/B, The “computation-to-memory” ratio is B/4
(flop/byte)

39

Further optimization: Memory access

40

2 1 0 3 5 4 6 7 9 8 10 11 13 12 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Coalesced Loads

T0 T1 T2 T3

Coalesced Loads

Global memory coalescing

When all threads of a warp execute a load
instruction, if all accessed locations fall
into the same burst section, only one
DRAM request will be made and the
access is fully coalesced.

Further optimization: Memory access

41

Global memory coalescing

When the accessed locations spread
across burst section boundaries:

Coalescing fails

Multiple DRAM requests are made

The access is not fully coalesced.

Some of the bytes accessed and
transferred are not used by the threads

2 1 0 3 5 4 6 7 9 8 10 11 13 12 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Un-coalesced Loads

T0 T1 T2 T3

Un-coalesced Loads

Further optimization: memory access

In C the 2D arrays are linearized in
“row-major” (opposite in Fortran)

In Matrix multiplication transpose
one of the two matrixes

42

M0,2

M1,1

M0,1 M0,0

M1,0

M0,3

M1,2 M1,3

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3

M2,1 M2,0 M2,2 M2,3

M3,1 M3,0 M3,2 M3,3

M3,1 M3,0 M3,2 M3,3

M

linearized order in increasing address

Further optimization: shared memory

To achieve high memory bandwidth for
concurrent accesses the Shared
Memory is organized in banks that can
be accessed simultaneously :

16 banks in older GPU, 32 banks in modern GPU

If multiple addresses of a memory
request map to the same memory
bank, the accesses are serialized

43

Further optimization: shared memory

To achieve high memory bandwidth for
concurrent accesses the Shared
Memory is organized in banks that can
be accessed simultaneously :

16 banks in older GPU, 32 banks in modern GPU

If multiple addresses of a memory
request map to the same memory
bank, the accesses are serialized

44

Further optimization: shared memory

To achieve high memory bandwidth for
concurrent accesses the Shared
Memory is organized in banks that can
be accessed simultaneously :

16 banks in older GPU, 32 banks in modern GPU

If multiple addresses of a memory
request map to the same memory
bank, the accesses are serialized

45

46

Histograms

47

48

Sectioned partitioning results in poor memory
access efficiency

Adjacent threads do not access adjacent memory locations

Accesses are not coalesced

DRAM bandwidth is poorly utilized

49

Sectioned partitioning results in poor memory
access efficiency

Adjacent threads do not access adjacent memory locations

Accesses are not coalesced

DRAM bandwidth is poorly utilized

50

Change to interleaved partitioning
All threads process a contiguous section of elements

They all move to the next section and repeat

The memory accesses are coalesced

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

51

52

Histograms: data race

Each thread must update the previous
value of the bin

This is not compatible with parallel threads
 data race

The hardware ensures that no other
threads can perform another read-modify-
write operation on the same location until
the current atomic operation is complete

Atomic add, sub, inc, dec, min, max, exch (exchange),
CAS (compare and swap)

53

Histograms in HEP

54

55

Histogrammi per

cerchi

56

Hough Transform in GPU

The are infinite rings
passing through
(xH,yH) and (0,0)

57

All the infinite rings are
represented by a
straight line in the
parameters space

Hough Transform in GPU

Discretize the Hough
space

Look for accumulation
point

… the life is not so easy

58

[Rinaldi GPUinHEP 2014]

Hough Transform in GPU

Intrinsically parallel
algorithm

Each hit generates an independent
line in the Hough space

Two kernels:
Voting procedure

Extract result

Voting procedure
1 warp per SM

Hough Space in Shared Memory

Atomic Add

Extract result
Copy all the histograms in shared
memory to global

Apply thresholds (or more
complicated decisions)

59

Hits Array

Shared

memory
Shared

memory

Shared

memory

Merge in

Global

Hough transform results

60

Tips & Tricks

Avoid branches as much as possible

Organize data in memory in order to
use coalescence

Avoid frequent access to global
memory

Use atomics

Fill GPU with a lot of work, to hide
latency

Use profiling tools to look for
bottlenecks (Visual Profiler, Nsight,
etc.)

61

Conclusions

GPU are massively parallel processors

Often the implementation is
“incremental”:

Load balancing (threads & blocks)

Memory (type & access)

Atomic operations

Coding is relatively easy, optimization is
relatively complicated

A lot of documentation available on
network and several good books to learn

A lot of examples for free in cuda SDK

62

