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Prerequisites 

A little bit of C/C++ 

 

 

You don’t need experience in parallel 
programming, GPU and computer 
graphics. 
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CPU  

Multilevel and 
Large Caches 

Convert long latency 
memory access  

Branch prediction 
To reduce latency in 
branching 

Powerful ALU 

Memory 
management 

Large control part 
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CPU: latency 

oriented design 



GPU 

SIMT (Single 
instruction Multiple 
Thread) architecture 

SMX (Streaming Multi 
Processors) to execute 
kernels 

Thread level 
parallelism 

Limited caching 

Limited control 

No branch prediction, 
but branch predication 
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GPU: throughput 

oriented design 



Serial Programming 

The problem is 
subdivided in 
sequential tasks 
(instructions) 

Only one 
instruction in 
each moment 

Often task N 
depends on the 
result of task N-1 
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PROBLEM 

TASK #3 

TASK #2 

TASK #1 

TASK #0 

Processor 



Parallel programming 

The tasks are 
independent 
at algorithimic 
level. 

Each task is 
processed 
independently 
on different 
processors 
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PROBLEM 

TASK #3 TASK #0 TASK #1 TASK #2 

Processor Processor Processor Processor 



Several types of parallelism 

Single Instruction Multiple Data (SIMD) 
One scheduler for multiple cores. 

Different cores execute the same instruction at the same 
time on different data stream, 

Multiple Instruction Single Data (MISD) 
Different processors execute different instructions on the 
same data stream 

Multiple Instruction Multiple Data (MIMD) 
Each processor execute its own instruction on its own data 
set. 

Single Instruction Multiple Threads (SIMT) 
SIMD combined with multithreading 

7 



Several types of parallelism 

Single Instruction Multiple Data (SIMD) 
One scheduler for multiple cores. 

Different cores execute the same instruction at the same 
time on different data stream, 

Multiple Instruction Single Data (MISD) 
Different processors execute different instructions on the 
same data stream 

Multiple Instruction Multiple Data (MIMD) 
Each processor execute its own instruction on its own 
data set. 

Single Instruction Multiple Threads (SIMT) 
SIMD combined with multithreading 

8 

GPUs are SIMT processors! 



Is it always convenient to use parallel programming? 
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Is it always convenient to use parallel programming? 
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Heterogenous Computing 

A winning application use both 
CPU and GPU 

CPU for sequential part, where latency 
matters (CPU can be faster at least x10 
than GPU for sequential code) 

GPU for parallels part where throughput 
wins (GPU can be faster at least x100 than 
CPU for parallel core) 
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Our system: GTX750 
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GTX750: for gamers 

Kepler architecture 

512 cores 

4 SM (Streaming 
Multiprocessors) 

1 Tflops in single 
precision 

2 GB Ram 

80 Gb/s bandwidth 

PCIe 3.0 x16  



TESLA P100  
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TESLA: for computing 

Pascal architecture 

3584 cores 

60 SM (Streaming 
Multiprocessors) 

9 Tflops in single 
precision 

12-16 GB Ram 

549 Gb/s bandwidth 
(or 732 Gb/s) 

PCIe 3.0 x16 (or 
NVLINK) 



TESLA V100 
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TESLA: for computing 

Volta architecture 

5120 cores 

84 SM (Streaming 
Multiprocessors) 

15 Tflops in single 
precision 

16 GB Ram 

900 Gb/s bandwidth  

PCIe 3.0 x16 (or 
NVLINK) 



How to program GPU? 

15 

Applications 

Libraries Programming 

Languages 

Compiler 

Directives 



GPU Accelerated Libraries 

Easy to use, 
High Quality 

“plug & play” 

Several library 
for several 
applications 

Several 
examples in 
physics 
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NVIDIA 

Video 

Encode 



Thrust: Example 
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thrust::device_vector<float> deviceInput1(inputLength); 

thrust::device_vector<float> deviceInput2(inputLength); 

thrust::device_vector<float> deviceOutput(inputLength); 

 

thrust::copy(hostInput1, hostInput1 + inputLength,   

 deviceInput1.begin());  

thrust::copy(hostInput2, hostInput2 + inputLength, 

 deviceInput2.begin()); 

 

thrust::transform(deviceInput1.begin(), 

deviceInput1.end(),      deviceInput2.begin(), 

deviceOutput.begin(), 

       thrust::plus<float>()); 



GPU Directives 

Define a 
programming model 
to program 
accelerators without 
the complexity 
associated with the 
GPU programming 

Easy to use 

Very easy to 
integrate in already 
done serial code 

Hardware 
independent: 
portable code 
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OPEN 

HMPP 



OpenACC: example 
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#pragma acc parallel loop 

copyin(input1[0:inputLength],input2[0:

inputLength]),  

 copyout(output[0:inputLength]) 

    for(i = 0; i < inputLength; ++i) { 

        output[i] = input1[i] + 

input2[i]; 

    } 



GPU Programming Languages 

Performance: 
programmers control 
every computing step 

Flexible: The 
computation does not 
need to fit into a 
limited set of library 
patterns or directive 
types 

Complex: the 
complexity is higher 
with respect to 
libraries and 
directives. 
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pyCUDA 



CUDA toolkit 

NVIDIA provides: 
NVCC: compiler for device+host, device, host 
applications 

CUDA MEMCHECK: debugger for memory 

CUDA-GDB: parallel debugger 

Nvvp, nvprof: Profilers 

Nsight: An IDE platform 

Tons of examples   
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https://developer.nvidia.com/cuda-downloads 

https://docs.nvidia.com/cuda/ 



Cuda Model and Processing Flow 
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What is CUDA? 
It is a set of C/C++ 
extensions to enable the 
GPGPU computing on 
NVIDIA GPUs 

Dedicated APIs allow to 
control almost all the 
functions of the graphics 
processor 

Three steps: 
1) copy data from Host 
to Device 

2) copy Kernel and 
execute 

3) copy back results 
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Software and hardware 

CUDA is a realization of the heterogeneous computing 
paradigm: CPU for serial part and GPU for parallel 
part 
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CUDA maps the hardware 
architecture to high level 
software programming 

HOST: CPU 

DEVICE: GPU 



Structure of a Program 
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MAIN - HOST 

KERNEL - DEVICE 

COPY DATA HD 

COPY DATA DH 

LAUNCH KERNEL  



Kernel call 

25 

mykernel<<<N,M>>>() 

Number of threads 

per block 

Number of 

Blocks 

Keep in mind: the 
number of threads per 
block is limited 



deviceQuery & bandwidthTest 
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Hello World! 

Host “Hello World!” 

 

 

 

Parallel “Hello World!”  
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Vector Sum 

Serial code  
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GPU code using blocks 

VecAdd with Blocks 

 

threadIdx.x, blockIdx.x 

cudaMalloc(), cudaMemcpy(), 
cudaFree() 
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We are using a 
big grid 
(1048576), but 
each block uses 
only one thread 

A block doesn’t 
correspond exactly 
to on SM 
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Very inefficient 

The GT750 has 
a limited 
number of 
Multiprocessors 
(4)  

Roughly 
speaking: only 
4 threads are 
concurrent  
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With threads 

 

 

 

Factor 500! Suspect…  printout, 

cuda-gdb, error checking  
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Thread index 

The right way is to use blocks & 
threads 

… with the correct indexing 
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Threads , Blocks & Warps 

Threads and Blocks are not equivalent 
The main difference is that the threads can 
“communicate” 

The instruction set is pipelined in the 
hardware  the most basic unit of 

SIMD scheduling is a “Warp” 

A warp consists of 32 threads 

If the number of threads is multiple of 
32 then no divergence 

The warp is also the natural unit to 
access memory  
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The memory hierarchy is fundamental in 
GPU programming 

Most of the memory managing and data 
locality is left to the user  

Unified Address Space  

Global Memory 
On board, relatively slow, lifetime of the application, 
accessible from host and device 

Shared memory/registers 
On Chip, very fast, lifetime of blocks/threads, 
accessible from kernel only 
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Variab le dec la ra tion Memory Sc ope Lifetime 

                            int Loc a lVar; reg ister thread  thread  

__devic e__ __shared__   int SharedVar; shared  b loc k b loc k 

__devic e__              int Globa lVar; g loba l g rid  app lic a tion 

__devic e__ __c onstant__ int ConstantVar; c onstant g rid  app lic a tion 

Automatic variables 
reside in a register 

Except per-thread arrays 
that reside in global 
memory 



Matrix Multiplication: naive implementation 

One thread to compute one element of matrix C. Each 
thread loads one row of matrix A and one column of 
matrix B from global memory, and store the result 
back to matrix C in the global memory. 

Number of operations: MxNxKx2 

Number of memory access: MxNxKx2 words  

4xMxNxKx2 bytes 

Computation to memory ratio = ¼  memory 
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Matrix multiplication: tiled implementation  

One thread block computes one tile of matrix C. One thread in 
the thread block computes one element of the tile. 

 In each iteration, one thread block loads one tile of A and one 
tile of B from global memory to shared memory, performs 
computation, and stores temporal result of C in register. After all 
the iteration is done, the thread block stores one tile of C into 
global memory. 

If the tile size is B, the amount of global memory access is 
2*M*N*K/B, The “computation-to-memory” ratio is B/4 
(flop/byte) 
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Further optimization: Memory access 
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2 1 0 3 5 4 6 7 9 8 10 11 13 12 14 15 

Burst section  Burst section  Burst section  Burst section  

T0 T1 T2 T3 

Coalesced Loads 

T0 T1 T2 T3 

Coalesced Loads 

Global memory coalescing 

 

 

 

 

When all threads of a warp execute a load 
instruction, if all accessed locations fall 
into the same burst section, only one 
DRAM request will be made and the 
access is fully coalesced. 

 



Further optimization: Memory access 
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Global memory coalescing 

 

 

 

 

When the accessed locations spread 
across burst section boundaries: 

Coalescing fails 

Multiple DRAM requests are made 

The access is not fully coalesced. 

Some of the bytes accessed and 
transferred are not used by the threads 

 

2 1 0 3 5 4 6 7 9 8 10 11 13 12 14 15 

Burst section  Burst section  Burst section  Burst section  

T0 T1 T2 T3 

Un-coalesced  Loads 

T0 T1 T2 T3 

Un-coalesced Loads 



Further optimization: memory access 

In C the 2D arrays are linearized in 
“row-major” (opposite in Fortran) 

In Matrix multiplication transpose 
one of the two matrixes  
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M0,2 

M1,1 

M0,1 M0,0 

M1,0 

M0,3 

M1,2 M1,3 

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3 

M2,1 M2,0 M2,2 M2,3 

M3,1 M3,0 M3,2 M3,3 

M3,1 M3,0 M3,2 M3,3 

M 

linearized order in increasing address 



Further optimization: shared memory 

To achieve high memory bandwidth for 
concurrent accesses the Shared 
Memory is organized in banks that can 
be accessed simultaneously : 

16 banks in older GPU, 32 banks in modern GPU 

If multiple addresses of a memory 
request map to the same memory 
bank, the accesses are serialized 
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Histograms 
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Sectioned partitioning results in poor memory 
access efficiency 

Adjacent threads do not access adjacent memory locations 

Accesses are not coalesced 

DRAM bandwidth is poorly utilized 
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Change to interleaved partitioning 
All threads process a contiguous section of elements  

They all move to the next section and repeat 

The memory accesses are coalesced 

 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
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Histograms: data race 

Each thread must update the previous 
value of the bin 

This is not compatible with parallel threads 
 data race 

The hardware ensures that no other 
threads can perform another read-modify-
write operation on the same location until 
the current atomic operation is complete 

Atomic add, sub, inc, dec, min, max, exch (exchange), 
CAS (compare and swap) 
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Histograms in HEP 
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Histogrammi per 

cerchi 
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Hough Transform in GPU 

The are infinite rings 
passing through 
(xH,yH) and (0,0) 
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All the infinite rings are 
represented by a 
straight line in the 
parameters space 



Hough Transform in GPU 

Discretize the Hough 
space 

Look for accumulation 
point 

… the life is not so easy 
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[Rinaldi GPUinHEP 2014] 



Hough Transform in GPU 

Intrinsically parallel 
algorithm 

Each hit generates an independent 
line in the Hough space 

Two kernels: 
Voting procedure 

Extract result 

Voting procedure 
1 warp per SM 

Hough Space in Shared Memory 

Atomic Add 

Extract result 
Copy all the histograms in shared 
memory to global 

Apply thresholds (or more 
complicated decisions) 
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Hits Array 

Shared 

memory 
Shared 

memory 

Shared 

memory 

Merge in 

Global 



Hough transform results 
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Tips & Tricks 

Avoid branches as much as possible 

Organize data in memory in order to 
use coalescence  

Avoid frequent access to global 
memory 

Use atomics 

Fill GPU with a lot of work, to hide 
latency 

Use profiling tools to look for 
bottlenecks (Visual Profiler, Nsight, 
etc.) 
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Conclusions 

GPU are massively parallel processors 

Often the implementation is 
“incremental”: 

Load balancing (threads & blocks) 

Memory (type & access) 

Atomic operations 

Coding is relatively easy, optimization is 
relatively complicated 

A lot of documentation available on 
network and several good books to learn 

A lot of examples for free in cuda SDK 
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