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Prerequisites

» A little bit of C/C++

o YOU don't need experience in parallel
programming, GPU and computer
graphics.




CPU
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o Multilevel and

_ Large Caches
---- o Convert long latency

memory access
o To reduce latency in

» Powerful ALU

CPU: latency » Memory
oriented design management

» Large control part
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GPU

|
|

o SIMT (Single
instruction Multiple
Thread) architecture

o SMX (Streaming Multi
Processors) to execute
kernels

o Thread level

o Limited caching
o Limited control GPU: throughput

» No branch prediction, oriented design
but branch predication
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Serial Programming

o The problem is

subdivided in

: sequential tasks
o (instructions)
TASK #2 » Only one

! iInstruction In
TAS:#l each moment
TASK #0 » Often task N

! depends on the

ProC eSsor result of task N-1
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Parallel programming

o The tasks are
independent
at algorithimic
level.

» Each task is
processed
independently
on different
Drocessors

PROBLEM

TASK #0 TAK#1 TASK #2 TASK #3

v v v v

Processor Processor Processor Processor




Several types of parallelism

Q
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Single Instruction Multiple Data (SIMD)

o One scheduler for multiple cores.

o Different cores execute the same instruction at the same
time on different data stream,

Multiple Instruction Single Data (MISD)

» Different processors execute different instructions on the
same data stream

Multiple Instruction Multiple Data (MIMD)

o Each processor execute its own instruction on its own data
set.

Single Instruction Multiple Threads (SIMT)
o SIMD combined with multithreading




Several types of parallelism

» Single Instruction Multiple Data (SIMD)

o One scheduler for multiple cores.

o Different cores execute the same instruction at the same
time on different data stream,

o Multiple Instruction Single Data (MISD)

» Different processors execute different instructions on the
same data stream

o Multiple Instruction Multiple Data (MIMD)

o Each processor execute its own instruction on its own
data set.

» Single Instruction Multiple Threads (SIMT)
o SIMD combined with multithreading

GPUs are SIMT processors!
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Is it always convenient to use parallel programming?
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» Depends on the serial part with respect to
the parallel part >Amdhal’s law:
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Is it always convenient to use parallel programming?

o Depends on the serial part with respect to
the parallel part >Amdhal’s law:

S f) =

s 1
fTS | (1 _pf)TP p—>oof

o The situation improves by increasing the
dimension of the problem > Gustafson’s
law

St = f() +p[1 - W] =>p
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Heterogenous Computing

o A winning application use both
CPU and GPU

o CPU for sequential part, where latency
matters (CPU can be faster at least x10
than GPU for sequential code)

o GPU for parallels part where throughput
wins (GPU can be faster at least x100 than
CPU for parallel core)
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Our system: GTX750

o GTX750: for gamers
» Kepler architecture

o 512 cores

2, o 4 SM (Streaming
Multiprocessors)

o 1 Tflops in single
precision

o 2 GB Ram
» 80 Gb/s bandwidth
o PCle 3.0 x16
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TESLA P100

TESLA: for computing
Pascal architecture
3584 cores

60 SM (Streaming
Multiprocessors)

O Tflops in single
precision
12-16 GB Ram

549 Gb/s bandwidth
(or 732 Gb/s)

PCIe 3.0 x16 (or
NVLINK)

13



TESLA V100

TESLA: for computing
Volta architecture
5120 cores

84 SM (Streaming
Multiprocessors)

15 Tflops in single
precision

16 GB Ram
900 Gb/s bandwidth

PCIe 3.0 x16 (or
NVLINK)
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How to program GPU?

s s SSeeeeeeeee——e—

Applications

Compiler Programming
Directives llanguages

Libraries
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GPU Accelerated Libraries

o Easy to use,

MAGMA _ _
e AArrayFire High Quality
cuLA|tools o "plug & play”
- » Several library
S for several
applications
» Several
Lt 0 examples in
bhysics
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Thrust: Example

et .

thrust: :device vector<float> devicelnputl (inputLength) ;
thrust: :device vector<float> devicelInput2 (inputLength) ;
thrust: :device vector<float> deviceOutput (inputLength) ;

thrust: :copy (hostInputl, hostInputl + inputLength,
devicelInputl.begin()) ;

thrust: :copy (hostInput2, hostInput2 + inputlLength,
devicelInput2.begin()) ;

thrust: :transform(deviceInputl.begin(),
deviceInputl.end(), deviceInput2.begin(),
deviceOutput.begin(),

thrust: :plus<float>());
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GPU Directives

S———

OpenAGCC

Directives for Accelerators

O

peniviP

Enabling HPC since 1997

OPEN
HMPP

Q

Define a
programming model
to program
accelerators without
the complexity
associated with the
GPU programming

Easy to use
Very easy to

integrate in already
done serial code

Hardware
independent:
portable code
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OpenACC: example

~ OpenACC

Directives for Accelerators

#pragma acc parallel loop
copyin(inputl [0:inputLength] ,input2[0:
inputLength]),

copyout (output[0:inputLength])

for(i1 = 0; 1 < 1nputlLength; ++1) {

output[i] = inputl[i] +

input2[1];

}
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GPU Programming Languages

( -

» Performance:
>
@Z s programmers control

CU DA every computing step

» / » Flexible: The
The Portland Group ComDUtation does nOt
NVIDIA need to fit into a

CUDA limited set of library
FORTRAN patterns or directive
types

o Complex: the
complexity is higher
with respect to
libraries and
directives.




CUDA toolkit

» NVIDIA provides:

o NVCC: compiler for device+host, device, host
applications

o CUDA MEMCHECK: debugger for memory
o CUDA-GDB: parallel debugger

» Nvvp, nvprof: Profilers

o Nsight: An IDE platform

o Tons of examples

https://developer.nvidia.com/cuda-downloads
https://docs.nvidia.com/cuda/
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Cuda Model and Processing Flow
o What is CUDA?

o It is a set of C/C++
extensions to enable the
GPGPU computing on
NVIDIA GPUs

o Dedicated APIs allow to
control almost all the
functions of the graphics
processor

o Three steps:

» 1) copy data from Host
to Device

o 2) copy Kernel and
execute

o 3) copy back results
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Software and hardware

o ——

o CUDA is a realization of the heterogeneous computing

paradigm: CPU for serial part and GPU for parallel
part
Host Device
» CUDA maps the hardware arid 1
architecture to high level Kornl s | Block || Blok
. (0,0 (1,0
software programming ,
Block” | Block |,
Software GPU CPU ‘!ﬂ,"l} ; (L9 :l'v‘
8 (=) . ’.-"f.'}idz ,’; :u '..‘
Thread Thread Processor Scalar SSE L ,'J’: i/ : f
2 - 4 o
== E Block (1, 1
& H

Thread Grid [aw

HOST: CPU
DEVICE: GPU

EsS— e
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Structure of a Program

—_—
#include =dtdia.h»

adalina B 143576
#dafing THREADS PER BLOCK SA2

wald Randesa<tar(int ®a, Lat ank{
far (Lot Lw@;ileam;Lles) {
albljmrand(pulided;
L]
L]

fimarnal
glakal wald Wecadddpuilat *a, LAt "k, LAt ®gpf
LAt Ladae = threadlde.n & Blochlde. s*bBlochbim. =; -
efindae] = afindax)es[indax];

b

Lat malawald) [
< MAIN - HOST
int *d a, *d b, *d
LAt %lza = WeiLzaarl[Lath;

Flaat tiea;

fudaEwant T &Lart, stag;
I cudaBvant raatagatartp;

cudaBvanti raata(Eatap);

FiAllae Ln Hedt fand TLLLLAg)
hoaw (lat *"peallocisiza;
B w (lat "peallocisiza;

h & wm [lat "peallocisiza;
Mandeswastarih a, Np;
Mandaswastarih B, Nj;

fialles Ln Daul<a

cudaMalla< ) (wald **jLd a, slzap;
cudaMalla< ) (wald **jLd b, wlzap;
cudaMalla< () (wald *»jLd ¢, wlzap;

FiCapy LAput wa<rars Tarm hast o dewlea
cudaMamspy(d a, h a, slze, cudaMamcpyHastTalaulca); ‘ OPY DA I A H D

cudaMamspyd B, B B, dl:a, fudaManspypHedtTolavlea);

FIELart Cims
cudaBvantiaard (Atarch;

fiLaunch Karnal an GPU

WatAddGpumnaN/THREADS PER BLOCK, THREADS PER BLOCK===(d a,.d B,.d £f;
LAUNCH KERNEL

Fiatag Lima

cudaBvantia<ard (STaph;
cudaBvantSpnchranlzadtag);
cudaBvantELlapiadTima (Erima, &tarr, stap);

fiCapy Badh tha results ‘ OPY DA I A DeH
cudaMamspyh €, d &, dlza, fudaManspylayleaTaHast};

fFriat Pagult
fariLat L=d;L=N; I
printf (“wd} B a:%d B Bewd b eowdia® L b a[L), b BLLY, A €[LD};

FIBFLAL Cilma
BrLATPC "Tima: %357 #d'\n”, Clesip;

FiClaanup
Traalh aj;
Traalh Bj;
Traalh £f;
cudaFraaid ap;
cudaFraaid Bj;
cudaFraaid £f;

24



Kernel call

Number of threads

per block
mykerne l<>N ,M>>> ()
Number of

Blocks

o Keep in mind: the
number of threads per
block is limited
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deviceQuery & bandwidthTest

S ———

HAN:S ON

26



Hello World!

» Host “Hello World!” eI

» Parallel “"Hello World!”

S S EE—

w4

HAN:S ON
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Vector Sum

- HEHEEEEN -
B

000000

o Serial code

g B
RRRRR
-

HANAS ON
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GPU code using blocks

HAN:S ON

o VecAdd with Blocks

» threadIdx.x, blocklIdx.x

» cudaMalloc(), cudaMemcpy(),
cudaFree()




R ° We are using a
b
- each block uses

only one thread

Block(1.1)

o A block doesn’t
correspond exactly
to on SM




» Very inefficient
ssssssss [l ssssssss ssssss » The GT750 has

coeeenes M ieeeseds an
I ) a limited

ssissis lisssesss s

- ’ \ number of

e — | | Multiprocessors

nmdg(o.o) (1.9 (2.9 (3.9 (4)

(0.1 (1.1 (2.1 (3.7 9 Roughly
speaking: only
4 threads are

(0.2 (1, (2.2 3.2/

concurrent
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o With threads

HANOS ON
o

o Factor 500! Suspect... - printout,
cuda-gdb, error checking
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Thread index

o The right way is to use blocks &

threads

» ... With the correct indexing

e ————

S EE—

gridDim.x = 4096

A

HANS ON

threadIdx.x

threadIdx.Xx

threadIdx.Xx

O1112131)...] 255

O|112]13]...]1255 |0 |1

2

31..

threadIdx.x

255

A

A

J

Y
blockIdx.x = @

index

index

Y
blockIdx.x = 1

blockIdx.x * blockDim.x + threadIdx.x

(2) *

Y

blockIdx.x = 2

(256)

+

0|1

2

3

.1 255

(3)

\,

J

= 515

Y

blockIdx.x = 4095
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Threads , Blocks & Warps

o Threads and Blocks are not equivalent

o The main difference is that the threads can
“communicate”

o The instruction set is pipelined in the
hardware = the most basic unit of
SIMD scheduling is a "Warp”

o A warp consists of 32 threads

o If the number of threads is multiple of
32 then no divergence

o The warp is also the natural unit to
access memory

34



Per-block

Readable/ writable by shared memory «——» Block (0,0)  Block (1,0)  Block (2, 0)

all threads in block 200000999999 | 999999999099

Ay

—
Readable/ writable b Perthread eovech i b | presect e | et i
CIMTIBIEDY | matememery [——RSOI05000008  S83035080888 | S3sss8ssssss

o The memory hierarchy is fundamental in
GPU programming

o Most of the memory managing and data
locality is left to the user

o Unified Address Space

o Global Memory

Device global
memory

o On board, relatively slow, lifetime of the application,
accessible from host and device

o Shared memory/registers

o On Chip, very fast, lifetime of blocks/threads,
accessibte-fromKkernel-only

Readable/writable
by all threads
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Grid

Block (0, 0)

|

Block (1, 0)

|

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

Host

“—>
“«—>

G
——————————
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Variable declaration Memory Scope Lifetime Thread
int Localvar; register thread thread 5 <
__device____shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
_device____constant__int ConstantVar; constant grid application ﬁm‘
Grid 0

» Automatic variables
reside in a register

o Except per-thread arrays

that reside in global

memory

_ Per-thread local

memory

Per-block shared

YyyYvy

| Block (0, 0)

S s

i Block (1, 0)

Block (2, 0)

i

| Block (0, 1)

Block (1, 1)

Block (2, 1) |

Grid 1
Block (0, 0) Block (1,0)
s
Block (0, 1) Block (1, 1)
SOOI 7
22222222 S —
RESESS
~ Block (0, 2) Block (1,2)
S
]

Y

Global memory
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Matrix Multiplication: naive implementation

A B C

One thread to compute one element of matrix C. Each
thread loads one row of matrix A and one column of
matrix B from global memory, and store the result
back to matrix C in the global memory.

Number of operations: MxNxKx2

Number of memory access: MxNxKx2 words -
4xMxXNxKx2 bytes

Computation to memory ratio = 4 < memory
bounded" -

HAN:S ON

A~




Matrix multiplication: tiled implementation

T E—

A B C
B,

o One thread block computes one tile of matrix C. On'e thread in
the thread block computes one element of the tile.

o In each iteration, one thread block loads one tile of A and one
tile of B from global memory to shared memory, performs
computation, and stores temporal result of C in register. After all
the iteration is done, the thread block stores one tile of C into
global memory.

o If the tile size is B, the amount of global memory access is
2*M*N*K/B, The “computation-to-memory” ratio is B/4

(flop/byte) [N
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Further optimization: Memory access

» Global memory coalescing

Coalesced Loads

Coalesced Loads
TO Tl T2

Tob T, T, T

T3
(VAN 4 5 6 7 8 9 10 11 12 13 14 15

Burst section Burst section Burst section Burst section

» When all threads of a warp execute a load
instruction, if all accessed locations fall
into the same burst section, only one
DRAM request will be made and the
access is fully coalesced.
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Further optimization: Memory access

» Global memory coalescing

Un-coalesced Loads Un-coalesced Loads
TO Tl T2 T3 TO Tl T2 T3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Burst section Burst section Burst section Burst section

» When the accessed locations spread

across burst section boundaries:
o Coalescing fails

o Multiple DRAM requests are made
o The access is not fully coalesced.

» Some of the bytes accessed and
transferred are not used by the threads




Further optimization: memory access

-

Moo | My, PR Mo Mii Mo Mz My My My, My My Mgy My, My

linearized order in increasing address

o In C the 2D arrays are linearized in
“row-major” (opposite in Fortran)

o In Matrix multiplication transpose
one of the two matrixes
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Further optimization: shared memory

» TO achieve high memory bandwidth for
concurrent accesses the Shared
Memory is organized in banks that can

be accessed simultaneously :
o 16 banks in older GPU, 32 banks in modern GPU

o If multiple addresses of a memory
request map to the same memory
bank, the accesses are serialized
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Further optimization: shared memory

C Linear addressing C

Random Linear addressing

Step size =1 Permutation Step size =3
Word Words

Broadcast
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Further optimization: shared memory

o 10
COl
Me

be
o 1

o If 1

rec
bal

P

17 P #
i u\-'.'.l.' e
5

Linear adressing Linear addressing
Step size = 2 Step size =8 or 5-way
Words words conflict
e ——
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Performance (GFLOPS)

160

140

120

100

80

60

20

Performance of different implementation methods

measured on 8800 GT with matrix size of 4096 x 4096

Naive Naive Tiling coalescing Avoid CompOpt Unrolling Prefetch
(CPU) (GPU) (GPU) (GPU) BankConflict (GPU) (GPU) (GPU)
(GPU)
Implementations
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Histograms

m a s v e | vy
@ a r a I | p
Thread 0 Thread 1 Thread 2 Thread 3
0 0 0 3 0 0 0
a-d e-h i~ m-p g-t u-x y-Z
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gramming
@ m a s s i v e | vy
v
&
4

Thread 0 Thread 1 Thread 2 Thread 3
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LSS

T E—

o Sectioned partitioning results in poor memory
access efficiency
o Adjacent threads do not access adjacent memory locations

o Accesses are not coalesced
o DRAM bandwidth is poorly utilized

49



e e e ———————————— e

o Sectioned partitioning results in poor memory
access efficiency
o Adjacent threads do not access adjacent memory locations

o Accesses are not coalesced
o DRAM bandwidth is poorly utilized

II

o Change to interleaved partitioning
o All threads process a contiguous section of elements

o They all move to the next section and repeat
o The memory accesses are coalesced

e ———
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Thread O

Thread 1

Thread 2

Thread 3
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Thread 0 Thread 1 Thread 2 Thread 3




Histograms: data race

o Each thread must update the previous
value of the bin

o This is not compatible with parallel threads
- data race

o The hardware ensures that no other
threads can perform another read-modify-
write operation on the same location until

the current atomic operation is complete
o Atomic add, sub, inc, dec, min, max, exch (exchange),

CAS (compare and swap)
>
kﬁ
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Histograms in HEP
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- Execution time (ﬁs}

250

200

150

100

50

| i |
400
n. Events per CLOP
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Hough Transform in GPU

o The are infinite rings

IS passing through

(Xu,Yn) and (0,0)

x*y +y*, —2Axy — 2By =0

o All the infinite rings are
represented by a
straight line in the
parameters space

g _ x*y +y*, — 2Axy

> ZByH
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Hough Transform in GPU

LSS

T E—

4 P Discretize the Hough
y a4 space
(X5,V5) (X3.V3) :
IRrCas S » Look for accumulation
.jf’{lrj.-—\!j) pOInt

!

o ... the life is not so easy
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Hough Transform in GPU

Intrinsically parallel

. Hits Arra

algorithm Y

o Each hit generates an independent

line in the Hough space ThreadBlock ~ ThreadBlock ~ _Thread Block

Two kernels: éé%’ % é‘%% \% é‘%‘é

o \Voting procedure “shared’ ! “shared’ ¥ “shared’ ¥

o Extract result -memory | -memory [ :memory
Voting procedure S I A |

o 1 warp per SM Merge i

o Hough Space in Shared Memory Global

o Atomic Add

Extract result

o Copy all the histograms in shared
memory to global

o Apply thresholds (or more
complicated decisions)

-
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Hough transform results
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Tips & Tricks

-

o Avoid branches as much as possible

o Organize data in memory in order to
use coalescence

» Avoid frequent access to global
memory

o Use atomics

o Fill GPU with a lot of work, to hide
latency

» Use profiling tools to look for
bottlenecks (Visual Profiler, Nsight,

etc.).



Conclusions

GPU are massively parallel processors

Often the implementation is

“incremental”:

o Load balancing (threads & blocks)
o Memory (type & access)

o Atomic operations

Coding is relatively easy, optimization is
relatively complicated

A lot of documentation available on
network and several good books to learn

A lot of examples for free in cuda SDK
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