

PROGRESS ON THE SUPERSONIC GAS JET BEAM PROFILE MONITOR

Hao Zhang

- Gas-jet project update
 - Motivation
 - Diagnostic development in Cl
 - Supersonic gas jet curtain
 - Beam induced fluorescent monitoring
 - Improve integration time and resolution
 - Jet density measurement
 - Design of the second test monitor

Serve as beam profile monitor for electron lens project

BIF monitor based on supersonic gas jet

Generation of supersonic gas jet

Conical skimmer 180 µm diame

HL-LHC-UK Plenary at University of Huddersfield 03/07/2017 hao.zhang@cockcroft.ac.uk

UNIVERSITY OF

LIVERPO

The Cockcroft Institute

Beam induced fluorescence mode

Advantage of using gas jet: No need to use leaking valve to increase the chamber pressure.

*Credit: GSI, http://www-bd.gsi.de/dokuwiki/doku.php

$$N_2 + p/e^- \rightarrow (N_2^+)^* + e^- + p/e^- \rightarrow N_2^+ + \gamma + e^- + p/e^-$$

Leads to the electronic transition $B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$ of the molecular ion with wavelengths around 391 nm, depending upon involved vibrational and rotational states

$N_2 + e^- \rightarrow (N_2)^* + e^- \rightarrow N_2 + \gamma + e^-$

Drives the electronic transition $C^3\Pi_u \rightarrow B^3\Pi_g$ of the neutral molecule with wavelengths around 337 nm. This process cannot be initiated directly by protons because it implies a spin flip mechanism: the upper $C^3\Pi_u$ state is a triplet one, while the ground state of N_2 is a singlet and total spin should stay preserved during excitation.

Credit: Serban Udrea, GSI

N₂ as working gas: cross sections VIVERSITY

Credit: Serban Udrea, GSI

Details on the interaction chamber

Blackened firstly by a Germany Company and then applied another layer of Graphite

$$N_{\gamma} = \sigma \cdot \frac{I \cdot \Delta t}{e} \cdot n \cdot d \cdot \frac{\Omega}{4\pi} \cdot T \cdot T_{f} \cdot \eta_{pc} \cdot \eta_{MCP}$$

σ (cross section)	$9.2*10^{-19}$ cm ²
<i>I</i> (electron current)	~10 uA
n (gas jet density)	$2.5*10^{10} \text{cm}^{-3}$
d (jet thickness)	2.8 mm
Ω(acceptance solid angle)	$4\pi \cdot 10^{-5}$ sr
$\eta_{ m pc}$ (MCP photocathode efficiency)	0.2
$\eta_{\rm MCP}$ (MCP detection efficiency)	0.5
T(Transmittance of optics)	0.65
T _f (Transmittance of band pass filter)	0.3

 $N_{\gamma} = 0.08^* \Delta t$

Gas jet image from fluorescent

250

200

150

100

50

0

HL-LHC PROJEC

1pixel = 0.215 mm

QUASAR

- Recover from Lab move
- New E-gun parameter
 - I = 100 μA currently
 - Upgradable to 300 μA
- New optical system
 - Increase total transmittance and accepted angle by 5 times
- Integration time can be reduced ~50 times
- Using smaller size 3rd skimmer
 - Smaller jet width, better resolution

- DELLOWS HOLDERS 1...5: CAGE PLATES DO DE LANE PLANE PLANE PLANE PLANE PLANE PLANE PLANE PLANE OPTICAL AXIS OPTICAL AXIS OPTICAL AXIS DAPTER RINGS DI CT PLANE OPTICAL AXIS
- But increased integration time

Gas density measurement

Edge scan (large skimmer)

Jet size in interaction point is estimated as : 10.03 mm * 2.81 mm

$$\sigma_{\rm jet} = 0.99 \ {\rm mm}$$

Credit: Elena Barrios Diaz, CERN

Elements of the BGC system

HL-LHC PROJEC

hao.zhang@cockcroft.ac.uk

Elements of the BGC system

Credit: Elena Barrios Diaz, CERN

Summary

- We successfully use the supersonic gas jet to monitor beam profile in fluorescent mode.
- The design of a second monitor is finished and sent out for manufacture.
- Future study for improve the integration time and resolution is still undergoing.
- Simulation about the gas dynamic is still needed to aim for beam requirement of the electron lens project.

Thank you!

