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Motivation: Crab bunch rotation and pile-up at HL-LHC

§ LHC luminosity is currently limited by 
geometrical overlap, due the crossing 
angle (285µrad) between beams.

§ At HL-LHC, RF crab cavities will 
rotate the bunches to collide head on:
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way, the load on Level-2 will be diminished and extra re-
sources will be available for more advanced selection al-
gorithms, which ultimately could improve the b-tagging,
lepton identification, etc.

Suggestions are also in place for combining trigger ob-
jects at Level-1 (topological triggers) and for implement-
ing full granularity readout of the calorimeter. The latter
will strongly improve the triggering capabilities for elec-
trons and photons at Level-1.

5 ATLAS Upgrade: Phase-II

The ATLAS Phase-II upgrade is scheduled for 2022 and
2023. During this time, LHC will be out of operation for
furnishing with new inner triplets and crab cavities. As a
result, an instantaneous luminosity of 5 ⇥ 1034 cm�2s�1

should be achieved. The goal is to accumulate 3000 fb�1

of data by ⇤ 2030.
ATLAS Phase-II preparations include a new Inner De-

tector and further trigger and calorimeter upgrades.

5.1 New Inner Detector

Running at nominalLpeak for the LHC , will bring, on av-
erage, ⇤ 28 primary interactions (pile-up events) per bunch
crossing, every 25 ns. The number of pile-up events at
5⇥1034 cm�2s�1 is therefore expected to be ⇤ 140. (Should
luminosity levelling not be fully e�ective or some other
scheme adopted, 7⇥1034 cm�2s�1 should at least be accom-
modated.) This will result in 5 to 10 times higher detec-
tor occupancies, which is beyond the TRT design param-
eters. Furthermore, by 2022, the Pixel and the SCT sub-
systems, would seriously degrade their performance due
to the radiation damage of their sensors and FE electron-
ics. Because of all these factors, ATLAS has decided to re-
place the entire Inner Detector with a new, all-silicon Inner
Tracker (ITk). The ITk must satisfy the following criteria
(w.r.t. ID): higher granularity, improved material budget,
increased radiation resistivity of the readout components.
At the moment, the ITk project is in an R&D phase. Dif-
ferent geometrical layouts are simulated and their perfor-
mance is studied in search for the optimal tracker archi-
tecture. A major constraint on the design is the available
space, defined by the volume taken by the ID in ATLAS.
This implies a maximum radius of ⇤ 1 m and the limiting
existing gaps for services.

The current baseline design of the ITk, depicted in Fig.
3, consists of 4 Pixel and 5 Si-strip layers in the barrel part.
The two endcap regions are each composed of 6 Pixel and
5 Si-strip double-sided disks, built of rings of modules. The
pixel modules are with identical pixels of size 50⇥250 µm,
whereas the Si-strip modules come in two types, with short
(24 mm) and long (96 mm) strips. As in the current SCT,
the Si-strip modules are designed to be of 2 pairs of silicon
microstrip sensors, glued back-to-back at an angle of 40
mrad to provide 2D space-points.

Intensive R&D studies are also in process to select the
most suitable pixel sensor technology out of Si-planar, 3D
and diamond, and to find the optimal layout of the Si-strip
modules [8].

Fig. 3. The baseline layout of the new Inner Detector, traversed by
simulated 23 pile-up events (left) and 230 pile-up events (right).

5.2 Calorimeter and trigger upgrades

The HL-LHC conditions will have a major impact on the
Calorimetry system. To ensure an adequate performance,
a replacement of the cold electronics inside the LAr Ha-
dronic endcap, as well as, a replacement of all on-detector
readout electronics for all calorimeters may need to be an-
ticipated. Also, the operation of the Forward Calorimeter
(FCal) could be compromised. To maintain the FCal func-
tioning at the HL-LHC, two possible solutions are consid-
ered [7]: first, complete replacement of the FCal, and sec-
ond, installation of a small warm calorimeter, Mini-FCal,
in front of the FCal. The Mini-Fcal would reduce the ion-
ization and heat loads of the FCal to acceptable levels.

The planned trigger upgrades for Phase-II, are con-
nected with implementing a Track Trigger at Level-1/Level-
2, applying full granularity of calorimeter at Level-1 and
improving the muon trigger coverage.

6 Conclusions

ATLAS collaboration has devised a detailed program to re-
flect the changes in the LHC conditions towards the High-
Luminosity LHC, characterized by high track multiplicity
and extreme fluences. At each of the 3 phases of the up-
grade program, actions will be undertaken to reassure the
stable and e⇥cient performance of the ATLAS detector.
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HL-LHC: pile 
up increases 

to ~140
vertices per 

crossing.

23 interactions 
per bunch 
crossing at 

nominal LHC

One bunch crossing in the ATLAS particle tracker:

LHC HL-LHC 
(using crab cavities) To optimize the performance of the crab-

cavities for HL-LHC, a new diagnostic tool 
is under development to monitor the bunch 

rotation.
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Intra-bunch diagnostics at CERN
§ Head-tail monitors are the main instruments to visualize and study beam instabilities 

as they occur.
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§ Standard approach:
§ Stripline BPMs + fast sampling oscilloscopes.

§ Limitation:
§ Bandwidth up to a few GHz, limited by the pick-up, 

cables and acquisition system.

§ A new technology is needed:
Fast electro-optic pick-up
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Electro-Optic Beam Position Monitor Concept

§ Replace the pick-ups in a button BPM with electro-optic crystals.
§ The electric field from a passing relativistic bunch of charged particles 

interacts with a birefringent (polarisation sensitive) crystal.
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Original Concept for Electro-Optical for HT Monitor. 

Type of electro-optic crystal signal respondse: 
Robust Configuration !  Polarization state change.  

Δ  Σ 

Similar principle as the traditional BPMs:  
Position obtained by calculating Δ / Σ  
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The 1ns LHC particle bunch induces a change in 
the polarization of laser light in the crystal, so the 
beam position along the bunch can be monitored.
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EO-BPM: polarizer-analyser robust design
§ Effectively a button BPM based on eo-crystals.
§ Transverse position is monitored.
§ A fibre-coupled design with laser and detectors 

160 m away from accelerator tunnel.
§ Incoming light is collimated by a GRIN lens and 

polarized before entering the crystal.
§ The passing bunch induces polarization 

change by changing the crystal properties.
§ Light emerges through an analyser and is read-

out by a fibre-coupled photodetector.
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EO-BPM: interferometric design

§ Mach-Zehnder Interferometer topology
§ Uses phase modulation rather than a 

polarization-analyser.
§ Short, equal fibre lengths between the 

splitters to  improve tolerance to 
thermal instabilities. and provide 
synchronization between pick-ups 

Key Advantage:
§ Coherent light suppresses the common 

mode signal, so the difference signal is 
directly measured by the photodetector:

§ Signal proportional to DE → better 
resolution.
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Interferometric Design. 

o  Phase Modulation rather than polarization analyser. 

o  A fibre-coupled interferometer with laser and detectors at 160 m away from the accelerator tunnel. 
 
o  Incoming light is collimated by a GRIN lens and polarize before entering the crystal 

Key advantage : signal proportional to ΔE   ! BETTER RESOLUTION   
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First Prototype for the CERN SPS
§ A preliminary EO-BPM design was developed for initial tests at the SPS:

§ SPS proton bunch parameters most similar to HL-LHC
§ Located next to existing Head-Tail monitor (stripline BPM) for comparison and triggering.
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New
EO-BPM

Existing
HT monitor

SPS
side view front view

Crystal

Right angled prisms

Pick-up at 
SPS

R*

*Original design R = 40 mm
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Electro-Optic Pick-up Design
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EO-BPM Optics Installation
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§ Prototype EO-BPM has been 
installed on the CERN SPS.

§ The horizontal pick-ups are both 
equipped with optical breadboards.

Internal view of the fibre-coupled 
polarisation optics.
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Results from the First Prototype
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Beam conditions: AWAKE
Bunch length = 1.8ns
Intensity flat top = 2.8E11

Polarisation state after crystal:
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Results from the First Prototype
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Correct optical behavior: Proof of concept achieved
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Results from the First Prototype

Sophie Bashforth et al.  - Electro-Optic BPM  - HL-LHC July 2017 13

Proof of concept achieved! 
Next aim: improve EO-BPM sensitivity
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Electrode Pick-up Design
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Prototype 0 Prototype 1
Reused the buttons with new crystal length of 9mm 

and electrode pieces now included in the design.
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Electrode Pick-up Design
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EM Simulations of Electrode Pick-up
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Prototype 0 Prototype 1

0.65 kV/m 2.8 kV/m

Overall increase signal factor ~ 8

LNBElectrode

E-field increase factor ~ 5

Considering doubling crystal length :
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First Tests of Electrode Pick-up

§ Initial results are promising!

§ Signal detected in box with electrode 
pick-up installed.

§ Preliminary analysis indicates 
improvement of ~ factor 5.

§ Further analysis required for final 
confirmation.
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Future Outlook

§ Planned bench tests with fast voltage beam signal from conventional pick-ups using 
an external EO-modulator.

§ Interferometric design to be investigated on the test bench at RHUL.

§ Review of EO-BPM project at CERN in September.

§ Begin 18 month Long Term Attachment (LTA) at CERN in October.

§ Plans being discussed currently to test an EO-BPM at Diamond Light Source and/or 
CLEAR during the CERN long shutdown in 2019.
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Thank you for 
listening!
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