A Higgs Portal to Vectorlike Fermions

Enrico Lunghi Indiana University

June 1, 2017 Fermilab

R. Dermisek, J. Hall, E.L. and S. Shin 1408.3123 R. Dermisek, E.L. and S. Shin 1509.04292, 1512.07837, 1608.00662 R. Dermisek, E.L. and S. Shin, to appear

Motivations

- From a purely theoretical point of view the most natural extensions of the SM are:
	- A sequential fourth generation (now heavily constrained)
	- A second Higgs doublet
		- The Higgs sector is not constrained by any symmetry apart from custodial SU(2). Note though that one doublet implies the CKM.
		- A second doublet is required in any supersymmetry model. \blacktriangleright
	- Vectorlike fermions which appear in many extensions of the SM. ψ
		- **String theories**
		- **Example Higgs models (heavy partners of SM fermions)**
		- Warped extra dimensions (KK excitations)
		- Composite Higgs models (excited Higgs constituent states)
		- Supersymmetric models (improve the little hierarchy problem, modify the Higgs \blacktriangleright spectrum without affecting EW precision observables)
		- Top see-saw models

 \triangleright …

Motivations

- From a phenomenological point of view, vectorlike fermions have been invoked
	- to explain anomalies in Z-pole observables (VLQ)
	- to resolve the muon g-2 anomaly (VLL which mixes with the muon) ψ
	- to understand values of gauge couplings from IR fixed point behavior ψ
	- as an explanation for the (now defunct) 750 GeV di-gamma resonance
	- ….
- We consider simple scenarios in which a 2HDM is supplemented by a SU(2) singlet or doublet vectorlike lepton (VLL) or quark (VLQ)
	- The main appeal of these models is that it is easy to arrange for large branching ratios of a heavy Higgs into a vectorlike fermion plus SM fermion; thus gaining competitive access to large Higgs and vectorlike fermion masses

What are vectorlike fermions?

- Left and Right handed chiral components belong to the same SU(3)xSU(2)xU(1) representation.
	- All anomalies automatically cancel
	- Mass terms do not break gauge invariance, implying that the mass of vectorlike fermions is decoupled from the Higgs sector
- The simplest way to think about vectorlike fermions is to add a pair of left-handed fields transforming under the representations R and \bar{R} (the latter correspond to the right-handed component)
- Models usually considered in the literature consist of
	- Singlets: *TL,R* and *BL,R*
	- Doublets: *(T B)L,R*, *(X T)L,R* and *(B Y)L,R* $\mathscr{M}_{\mathscr{P}}$
	- Triplets: *(X T B)L,R* and *(T B Y)L,R*
- The convention is that the field *T* and *B* have charges 2/3 and -1/3, implying that the field X, Y have charges 5/3 and -4/3
- We consider $T_{L,R}$, $B_{L,R}$ and $(TQ BQ)_{L,R}$ which transform as t_R , b_R and $(t_L b_L)$

A simple model with a handful of parameters

The particle content we consider is:

- The Z_2 assignment has been made to guarantee a 2HDM type-II and avoid tree-level flavor changing neutral currents:
	- $*$ the *SU(2)* singlets u_R and $T_{L,R}$ couple only to H_u
	- \bullet the *SU(2)* singlets d_R and $B_{L,R}$ couple only to H_d
- Note that the $Q = (T^Q B^Q)$ and that T^Q and T are different particles!

Vectorlike Quarks

A simple model with a handful of parameters

• The most general Yukawa and Mass terms are:

$$
\mathcal{L}_{\text{Mass}}^{\text{VLQ}} = \left[-y_d^{ij} \bar{q}_L^i d_R^j H_d \right] - \lambda_B^i \bar{q}_L^i B_R H_d - \lambda_Q^j \bar{Q}_L^i d_R^j H_d
$$
\n
$$
- y_u^{ij} \bar{q}_L^i u_R^j H_u \right] - \kappa_T^i \bar{q}_L^i T_R H_u - \kappa_Q^j \bar{Q}_L^i u_R^j H_u
$$
\nVLQ masses\n
$$
\left[-M_Q \bar{Q}_L Q_R - M_T \bar{T}_L T_R - M_B \bar{B}_L B_R
$$
\nVLQ Yukawas\n
$$
\left[-\lambda \bar{Q}_L B_R H_d - \bar{\lambda} H_d^\dagger \bar{B}_L Q_R - \kappa \bar{Q}_L T_R H_u - \bar{\kappa} H_u^\dagger \bar{T}_L Q_R \right] + \text{h.c.}
$$

After EW Symmetry Breaking the mass matrix for the 5 charge 2/3 particles is:

$$
\left(\begin{array}{cc} \bar{u}_L^i & \bar{T}_L^Q & \bar{T}_L \end{array}\right) \left(\begin{array}{ccc} y_u^{ij}v_u & 0 & \kappa_T^iv_u \\ \kappa_Q^jv_u & M_Q & \kappa v_u \\ 0 & \bar{\kappa} v_u & M_T \end{array}\right) \left(\begin{array}{c} u_R^j \\ T_R^Q \\ T_R \end{array}\right)
$$

A simple model with a handful of parameters

- The <u>vectors</u> κ^i_T and κ^i_Q introduce mixing between the VLQs and the SM fermions
- Strong constraints from atomic parity violation and the R_c measurement at LEP, essentially confines this mixing to the third generation (hence the notation that we adopted)
- The decoupling of the direct contributions to the VLQ masses ($M_{T,B,Q}$) from the corresponding subleading Yukawa terms, $(\lambda_Q, \lambda_B) v_d$ and $(\kappa_Q, \kappa_T) v_u$, allows to evade bounds from Higgs production (that severely constrains a sequential fourth generation)
- The 3x3 mass matrices for up and down type VLQs are:

$$
M_u = \left(\begin{array}{ccc} y_t v_u & 0 & \kappa_T v_u \\ \kappa_Q v_u & M_Q & \kappa v_u \\ 0 & \bar{\kappa} v_u & M_T \end{array}\right) \quad M_d = \left(\begin{array}{ccc} y_b v_d & 0 & \lambda_B v_d \\ \lambda_Q v_d & M_Q & \lambda v_d \\ 0 & \bar{\lambda} v_d & M_B \end{array}\right)
$$

- In our notation the 4 vectorlike mass eigenstates are denoted as *t4,5* and *b4,5*
- The parameters $\kappa, \; \bar\kappa, \; \lambda, \bar\lambda$ control the mixing between the VLQ doublet and singlets: the doublet fraction of the lightest VLQ (*t4* in our case) is an important quantity because it controls its coupling to the W boson.

Enrico Lunghi 8/45

Before switching on mixing terms (λ **and** κ **terms) gauge interactions are diagonal** and controlled by the fermion representations:

The mixed VLQ-SM Yukawa interactions generate the following mixing:

 v_u^2 T_L^Q *^L tL* At large VLQ masses doublets (singlets) mix only with right (left) handed quarks $= \kappa_Q y_t$ M_C^2 mix only with right (left) handed quarks *Q* T^Q_R v_u *tR R* κ_Q = $M_{\bm{Q}}$ B_L^Q b_L $L \rightarrow \infty$ ≈ 0 B_R^Q *vd bR* $R \rightarrow \frac{V_R}{V} = \lambda_Q$ = M_Q *tL* v_u T_L _{*n*} $=\kappa_T$ $M_{\overline{I_{s}}}$ v^2_u T_R *tR u* = $M^2_{\mathcal{T}}$ *T* v_d b_L B_L b_L = λ_B = M_B *bR* $\frac{B_R}{\rightarrow} \frac{b_R}{\rightarrow} \approx 0$

W-interactions between VLQ and the third generation:

Enrico Lunghi 10/45

At large VLQ masses doublets (singlets)

Let's compare the W, Z and h couplings of a doublet/singlet vectorlike top:

Enrico Lunghi 11/45

- W and Z interactions are responsible for VLQ decays (e.g. $t_4 \rightarrow Wb$ and $t_4 \rightarrow Zt$) and EW single production
- Modification of third generation couplings to W and Z. For instance: \bullet

Gauge bosons couplings: CKM

- What about flavor changing interactions?
	- As long as the vectorlike fermions couple to the third generation only, there are no induced FCNC (at tree level) amongst the three SM generations
	- The structure of the CKM is modified by mixing with the VLQ quarks: ψ

$$
V_{\text{CKM}}^{\text{eff}} = \begin{pmatrix} V_{ud} & V_{us} & \alpha_b V_{ub} \\ V_{cd} & V_{cs} & \alpha_b V_{cb} \\ \alpha_t V_{td} & \alpha_t V_{ts} & \alpha_b \alpha_t V_{tb} \end{pmatrix} \text{ where } \begin{cases} \alpha_t = 1 - \begin{pmatrix} v_u^2 \frac{\kappa_T^2}{2M_T^2} \\ \alpha_b = 1 - \begin{pmatrix} v_d^2 \frac{\kappa_T^2}{2M_T^2} \\ \alpha_b = 1 - \begin{pmatrix} v_d^2 \frac{\lambda_B^2}{2M_B^2} \end{pmatrix} \end{cases}
$$

 $\leq 10^{-2}$

- Phenomenological implications:
	- No impact on CKM angles *α*, *β* and *γ*
	- Possible constraints from unitarity ψ
	- Possible enhancements in D mixing and decays: ψ

$$
A(c \to u) \sim \alpha_d^2 V_{cb} V_{ub}^* f(\frac{m_b^2}{m_W^2}) + (V_{cs} V_{us}^* + V_{cd} V_{ud}^*) f(0) \sim V_{cb} V_{ub}^* \left[\frac{m_b^2}{m_W^2} + (\alpha_d^2 - 1) \right]
$$

74.10⁻³ \approx 2.10⁻²

Effects in B physics are expected to be small

Enrico Lunghi 13/45

VLQ: Standard production channels

- Pair production: controlled only by the VLQ mass
- Single production: sensitive to mixing with SM fermions. Smaller than pair production but can become dominant (in some scenarios) at large VLQ mass

Enrico Lunghi 14/45

- CMS inclusive constraints from T and B pair production 8 TeV data
- Independent of any model parameter (as long as there are only three decay modes)! \bullet
- Remember that singlet and doublet pair production is identical.

- CMS constraints on single and pair production of VLQs (including 13 TeV data) \bullet
- GB equivalence theorem assumptions on BRs and coupling at 0.5.

Vector-like quark single production

Enrico Lunghi 16/45

• ATLAS inclusive constraints from T and T^Q pair production - 8 TeV data

Enrico Lunghi 17/45

ATLAS inclusive constraints from T and T^Q pair production - 13 TeV data

Enrico Lunghi *145 18* 18

 \vec{c}

Observed 95%

• ATLAS constraints on single T and T^Q production (8 and 13 TeV data)

VLQ: Higgs mediated channel

We consider the following Higgs-mediated single production topologies:

- Details of mixing enter only via the *H* and *t4* branching ratios
- Dependence of EW and Higgs-mediated single production on the model parameters are different

Enrico Lunghi 20/45

VLQ: cross sections and backgrounds

- To avoid constraints from the 125GeV Higgs we impose alignment on the 2HDM: $sin(\beta-\alpha)=1$
- This implies suppressed H couplings to Gauge bosons
- The signal cross section is simply (*gg,bb)*→*H* (VBF is suppressed) and has been generated with SuShi and HiGlu
- The range of the signal cross section is due to *tan(β)*
- In order to be competitive with pair and EW single production we focus on mass spectra for which the *H-t4* splitting is small
- Backgrounds have been estimated using MadGraph 5
- We require only some rough cuts (with signal acceptance larger than 80%):
	- The decay products of the t_4 are required to have $p_T > m_{t4}/2$ $\langle \psi \rangle$
	- The reconstructed Higgs mass is required to lie in a *100 GeV* window

Enrico Lunghi 21/45

VLQ: cross sections and backgrounds

- The topology of our signal is very similar to a heavy Zʹ: *pp*→*Z*ʹ→*t4t*
- In order to enhance the Z' branching ratio into the VLQ channel, one needs to assume a model in which the Zʹ is leptophilic and restrict the range of masses in such a way to suppress Z^{*'→t*4t4}
- 2.6 fb⁻¹ (13 TeV) • In the first analysis with 2.3 fb⁻¹ the impact of the spin of the intermediate resonance was not found to be large, implying that Zʹ search strategies can be trivially extended to *H→t*4t
- Present bounds are [CMS 1703.06352]:

Parameter space scan

- The crucial quantities that we need are: *BR(H*→*t4 t)* $BR(t_4 \rightarrow W b, Z t, h t)$
- We perform a scan over our model \bullet parameter space:
	- $\tan(\beta) \in [0.3, 50]$
	- M_Q $\in [0.9, 6]$ TeV
	- M_T $\in [0.9, 6]$ TeV

$$
\kappa_Q, \kappa_T, \kappa, \bar{\kappa} \in [-1,1]
$$

$$
\sin(\beta - \alpha) = 1
$$

$$
m_{t_5} \qquad \qquad > m_H
$$

- We impose constraints from
	- Direct searches
	- Oblique Corrections (S,T,U)
	- *h*→*γγ*
	- *H*→*γγ*
	- Z-pole observables (*Rb*)
	- \rightarrow *H*→*(WW, ZZ)*

Parameter space scan: H production

The origin of the large spread in H production cross sections can be simply understood by looking at the top and bottom Higgs couplings:

 where we take $tth \sim 1 + \frac{\xi}{\tan \theta}$ $\tan(\beta)$ *bbh* $\sim 1 - \xi \tan(\beta)$ $ttH \sim -$ 1 $\frac{1}{\tan(\beta)} + \xi$ $bbH \sim \tan(\beta) + \xi$ $\xi = \cos(\beta - \alpha) = 0$

Enrico Lunghi 24/45

Enrico Lunghi 25/45

- We find $H\rightarrow t_4$ t branching ratios up to 40%
- Branching ratios are essentially independent of the H mass \bullet

Enrico Lunghi 27/45

- Dominant parameters are m_{t4} and tan(β)
- Mixing is required (of course) but it is not responsible for setting the highest possible branching ratios

Enrico Lunghi 28/45

Parameter space scan: t₄ branching ratios

- Ellipsoidal shape caused the presence of simultaneous Yukawa couplings for iso-doublet vectorlike quarks
- Dominant constraint is from oblique corrections

Parameter space scan: EW vs Higgs production

- The ratio of Ht₄t and Wt₄b couplings ranges over more than two orders of magnitude, implying that, depending on the parameters, we expect regions of EW/Higgs dominance
- Numerical study in progress \bullet

Enrico Lunghi 20045

VLQ signatures

- Given the small cross sections it is necessary to avoid the very clean and suppressed Z→II and h→γγ modes, thus focusing on boosted massive jet signatures
- Main properties of the signal are the very large p_T of the vectorlike quark decay products and presence of two resonances.
- The signal that we propose is very similar to production of a single VLQ in the decay of a heavy Zʹ
- Models with leptophobic Z' which decays dominantly into a VLQ are quite contrived (need to suppress decays to pair of light fermions and need to kinematically forbid decays to VLQ pair).
- Our main points are that
	- the model we propose is well motivated and very reasonable
	- In presence of vectorlike quarks, heavy Higgses might be accessible exclusively via cascade decays

Vectorlike Leptons

Vectorlike leptons

Present bounds are very weak (few hundred GeV depending on the decay mode)

- To avoid enormous lepton flavor violation (e.g. *μ*→*eγ*) we need to preserve generalized lepton number by coupling the VLL to one generation only
- Light VLL (< 200 GeV) allow to resolve the muon g-2 anomaly.

Most recent flavor anomalies $(b\rightarrow sll, R(K^{(*)}), R(D^{(*)}))$ point quite decisively to lepton universality violation: VLL mixing with the muon could play a role.

Vectorlike leptons

- Collider signatures: VLQ vs VLL
	- Pair production of VLL is much smaller than in the VLQ case (EW suppression) ψ
	- Single EW VLL production is absent ψ
	- Single production in heavy Higgs decays are identical. Weak direct constraints on VLL imply much larger production cross sections which allow for searches based on *h*→*γγ* and leptonic Z and W decays.

Enrico Lunghi 34/45

Vectorlike leptons: constraints

Enrico Lunghi 35/45

Vectorlike leptons: the model

The Lagrangians for VLQ and VLL are identical: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

SM mixing in Yukawa interactions VLL masses VLL Yukawas *^L*VLL Mass ⁼ *yij* ` ¯`*i L*` *j ^RH^d ⁱ E* ¯`*i ^LERH^d ^j LL*¯*ⁱ L*` *j ^RH^d ⁱ ^N* ¯`*ⁱ ^LNRH^u MLL*¯*LL^R ^M^N ^N*¯*LN^R ^MEE*¯*LE^R L*¯*LERH^d* ¯*H† ^dE*¯*LL^R L*¯*LNRH^u* ¯*H† ^uN*¯*LL^R* + h*.*c*.*

Mixing patterns in absence of doublet/singlet mixing and right-handed neutrino:

Enrico Lunghi 36/45

Vectorlike leptons: the model

W interactions between VLL and one generation of SM leptons:

e4→*Wν* absent for purely doublet VLQ

Enrico Lunghi 2012 - 2021 - 2022 - 37/45

Vectorlike leptons: constraints and parameter scan

We perform a scan over our model parameter space:

 $\tan(\beta) \in [0.3, 3]$ $M_{L,N,E}$ \in [100*,* 500] GeV $\kappa_N, \kappa, \bar{\kappa} \in [-1, 1]$ $\lambda_L, \lambda_E, \lambda, \overline{\lambda} \in [-1, 1]$ $\sin(\beta - \alpha) = 1$

- **We impose constraints from**
	- \triangleleft LEP bound (m_{e4} $>$ 105 GeV)
	- Oblique Corrections (S,T,U)
	- *h*→*γγ*
	- *H*→*γγ*
	- *H*→*WW*
	- muon lifetime
	- Z-pole observables (partial width to μμ, invisible width, Forwardbackward asymmetry, Left-right asymmetry)
	- Constraints from multilepton searches at LHC

Enrico Lunghi 38/45

Vectorlike leptons: H branching ratios

Enrico Lunghi 39/45

Vectorlike leptons: H branching ratios

Enrico Lunghi 40/45

Vectorlike leptons: VLL branching ratios

\odot Impact of multilepton constraints

Enrico Lunghi 41/45

A case study: *hμμ*→*(γγ,bb)μμ*

- \bullet Cross sections for $m_H = 200$ GeV, $tan(\beta)=1$, $BR(H\rightarrow h\mu\mu) = BR(H\rightarrow e_4\mu \rightarrow h\mu\mu) = 0.5$
- Existing searches require a *Z*→*μμ:*
	- *A*→*hZ*→*bbμμ* [ATLAS 1503.08089]
	- *hlX*→*γγlX* [ATLAS 1407.4222]
	- *Zγγ*→*llγγ* [ATLAS 1604.05232]
- Simple improvements can enhance the sensitivity:
	- off-Z cut, $|m_{\mu\mu}-M_Z|>15\text{ GeV}$, to suppress Z+jets, ZZ, hZ backgrounds
	- missing energy cut to suppress tt and hit backgrounds

Present searches (not optimized) already constrain the parameter space!

A case study: *hμμ*→*(γγ,bb)μμ*

Expected constraints from dedicated reanalysis of existing and future data: $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Due to the extremely low background to the di-photon searches, higher $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ luminosity favors the bb channel.

A case study: *hμμ*→*(γγ,bb)μμ* at large *mH*

- *H*→*tt* dominates at small *tan(β)*
- *H*→*bb* dominates at large *tan(β)*
- \bullet *H*→*e₄μ* can dominate for *4* < $tan(β)$ < 17

Vectorlike leptons: other signatures

Enrico Lunghi 46/45

Conclusions

- A second Higgs doublet (with alignment) and vectorlike fermions are amongst the most straightforward extensions of the SM and appear in many BSM models.
- Vectorlike fermions have been invoked to solve several phenomenological issues (unification, muon g-2, flavor anomalies, …)
- Vectorlike Quarks standard productions mechanisms (QCD pair production and EW single production) are supplemented by production in Higgs decays
- Higgs mediated production cross sections can be large and yields promising channels to discover heavy Higgses and VLQ
- Vectorlike Leptons are allowed to be much lighter, have smaller pair production cross sections and no EW single production: Higgs mediated production is, therefore, extremely advantageous yielding a large number of novel signatures
- For both VLQ and VLL we explored the allowed parameter space and discussed novel signatures