

Results on GaAs radiation hardness

K. Afanaciev, M. Gostkin, H. Henschel, A. Ignatenko, M.-E. Castro-Carballo, W. Lange, W. Lohmann, M. Ohlerich, S. Schuwalow

> FCAL collaboration meeting CERN, 2009

Very Forward Region of the ILC Detector

- The purpose of the instrumentation of the very forward region is:
 - Hermeticity: increase the coverage to polar angles > 5mrad
 - Fast beam diagnostics

The Challenges for BeamCal

Irradiation facility

Superconducting DArmstadt LINear ACcelerator Technical University of Darmstadt

Irradiation up to several MGy using the injector line of the S-DALINAC: 8.5 and 10MeV electrons, beam currents from 2 to 100 nA corresponding to doserates about 10 to 600 kGy/h

Methodology. Irradiation

- •Irradiation under bias voltage
- •Monitoring of beam and sample currents, sample temperature

FCAL collaboration meeting CERN, 2009

Methodology. CCD Setup

FCAL collaboration meeting CERN, 2009

Gallium arsenide (GaAs) Compound semiconductor, direct bandgap Two sublattices of face centered cubic lattice (zinc-blende type)

GaAs grown by Liquid Encapsulated Czochralski (LEC). doped by Te or Sn (shallow donor) to fill EL2+ trapping centers. Compensated by Cr (deep acceptor) to high-ohmic intrinsic material. Compensation is temperature controlled Semi-insulating - no p-n junction

Signal charge transport mainly by electrons

	Density	5.32 g/cm^3
•	Pair creation E	4.3 eV/pair
•	Band gap	1.42 eV
•	Electron mobility	8500 cm ² /Vs
	Hole mobility	400 cm ² /Vs
•	Dielectric const.	12.85
•	Radiation length	2.3 cm
	Ave. E _{dep} /100 µm	
	(by 10 MeV e ⁻)	69.7 keV
	Ave. pairs/100 µm	13000
5	Structure	p-n or insul.

Structure provided by metallisation (similar to diamond)

Supplied by FCAL group at JINR Developed and produced in Tomsk

Testbeam 2007 Two pads of 2 sector samples irradiated by 10 MeV e⁻ 500 μm thick detector is divided into 87 5x5 mm pads and mounted on a 0.5mm PCB with fanout

Testbeam 2008

6 samples irradiated by 8.5 MeV e⁻ Thicknesses $160 - 200 \,\mu m$ Metallisation is V (30 nm) + Au (1 μm)

GaAs. Signal

GaAs. Irradiation results

<u>Results: CCE dropped to about 6% from 55% after 1.5 MGy</u> this corresponds to signal size of about 2000 e⁻

GaAs. Irradiation results

Dark current increased ≈ 2 times (from 0.4 to 1 μ A @ 200V)

Signal is still visible for an absorbed dose of about 1.5 MGy

A set of GaAs samples with different doping concentrations was irradiated

Batch #	Shallow donor type	Concentration, cm ⁻³
1	Te	$(1-1.5)*10^{17}$
2	Te	(5-6)*10 ¹⁶
3	Sn	(1-3)*10 ¹⁶

Thicknesses $150 - 200 \,\mu m$ Metallization: V (30 nm) + Au (1 μm) from both sides

GaAs. Second testbeam. I-V

I-V B11 pad4 23C

GaAs. Second testbeam. Irradiation results CCE measurements

GaAs:Cr CCE vs dose, batch #1

FCAL collaboration meeting CERN, 2009

A set of GaAs samples with different doping concentrations was irradiated GaAs:Cr CCE vs dose

For Electromagnetic irradiation Semi-insulating GaAs operational up to 1.5 MGy

Samples with lower dopant concentration show better results

Samples with Sn shallow donor dopant show better results (but low statistics)

Material from batch 3 (2008 testbeam) and batch 0 (2007 testbeam) show very similar behavior both in I-V and radiation hardness

A beta-version of a report on the results is avaliable at www.ifh.de/~akg/gaas_final/ you are welcome to comment

A new testbeam is being planned

New GaAs samples are being commisioned by JINR FCAL group We are going to test samples with different donor types and acceptor diffusion parameters.

#samples	Shallow donor type	Concentration, cm ⁻³	T diffusion
2	Te	$(2-5)*10^{16}$	T1
2	Te	$(2-5)*10^{16}$	T2 > T1
2	Sn	$(2-5)*10^{16}$	T1
2	Sn	$(2-5)*10^{16}$	T2

Thank you for your attention

Backup slides

Irradiation facility

