

Update on background MC simulation for luminosity measurement at ILC

I. Smiljanić, T. Jovin, I. Božović–Jelisavčić, M. Pandurović

- How well do we know B/S? (revisited)
- Setup and event selection
- Generator comparison
- Background rejection
- Summary

İİL

(Why the scaling game does not work?)

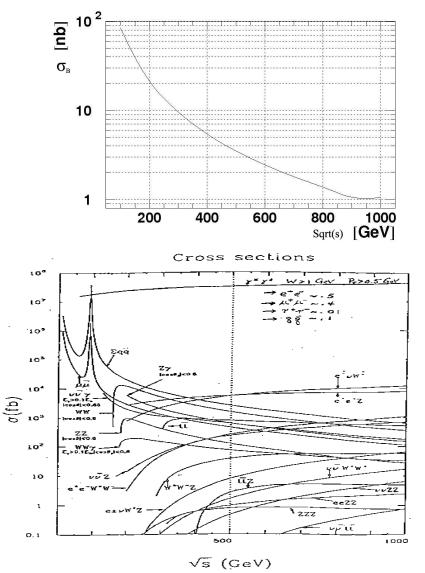
- Different cross-sections (in particular for signal) at 500 GeV and 1 TeV
- 4-f (2-gamma) cross sections described differently with different generator (WHIZARD vs. BDK)
- We do not (always) simulate all processes (i.e. hadronic background)
- 2-gamma topology is described differently with WHIZARD and BDK
- Simulation studies are influenced by statistics

can be taken into account through simple scaling

Cross-section issue - scaling

 Bhabha cross-section drops app. 4 times at 1 TeV (4.7 nb ⇒ 1.2 nb) compared to 500 GeV

IIL


HEP

 Background should rise into saturation (BDK 4.5 nb ⇒ 5.5 nb, only muons, 19.4 nb ⇒ 24.2 nb total background; WHIZARD 0.5 nb ⇒ 0.2 nb, only muons, 2.4 nb ⇒ 0.9 nb total background)

BDK- WHIZARD at least factor 10 at ILC energies and over 150 at 3 TeV (0.16 nb WHIZARD, ~25nb BDK) \Rightarrow scale WHIZARD result (B/S ~ 10⁻⁴) at 500 GeV for a factor 10³

4 XOVA

√|#(X

Setup and event selection

LUMICAL GEOMETRY

BARBIE 5.0

IIL

- R_{min} =8 cm, R_{max} =19.52 cm
- z=2510 mm
- $31.8 \le \theta \le 77.5 \text{ mrad}$
- 30 planes, 48x64pads

CUTS

Asymmetric cuts:*

- cut 1: 35.8-70.7 mrad;
- cut 2: 31.8-77.7 mrad. *Energy cut:*

HEP & XOVP VIH(X

• Erel>0.8

 $Erel = (E_F + E_B)/2E_{beam}$

* reduces BHSE to a 10⁻² level – topological cuts gives factor 10 at 500 GeV

SAMPLES

WHIZARD 100 kEvt *eell* BDK 100 kEvt *eell* BHABHA 5 pb⁻¹

Cross-sections*:

	500 GeV	1TeV	
WHIZARD	1.16 nb	0.45 nb	
BDK	9.70 nb	12.12 nb	
BHABHA	4.70 (3.94) nb	1.20 (1.00) nb	

* whole sample (tracks in nominal acceptance at both sides)

2-gamma processes in WHIZARD and BDK

Generator-level fractions of quasi-Bhabha events in LumiCal for WHIZARD and BDK (F [%]); background selection efficiency for WHIZARD and BDK after energy cut applied (Eff [%])

		$500 {\rm GeV}$	$1 { m TeV}$
	WHIZARD	8.0	4.8
$F \cdot 10^{-2} [\%]$	BDK	2.5	1.7
	WHIZARD	17.9	19.0
$\operatorname{Eff}[\%]$	BDK	9.9	7.1

- BDK gives more particles closer to the beam-pipe $\Rightarrow \sim$ factor 3 smaller fraction (F%) of quasi-Bhabha pairs in LumiCal.
- BDK has smaller fraction of electron spectators in LumiCal \Rightarrow better sensitivity to background rejection (1-Eff) for a factor two at all energies.
- these differences between generators compensate, for at least factor of 6, initial differences in cross-sections ⇒ the same order of magnitude for background to signal ratio at 500 GeV

Fraction of quasi-Bhabha pairs (background) to signal (B/S), before and after event selection, for WHIZARD and BDK at ILC energies

		$500 {\rm GeV}$	1 TeV
	WHIZARD	$2.3 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$
B/S before selection	BDK	$7.9 \cdot 10^{-3}$	$3.6 \cdot 10^{-2}$
	WHIZARD	$2.0 \cdot 10^{-4}$	$3.5 \cdot 10^{-4}$
B/S after selection	BDK	$2.5 \cdot 10^{-4}$	$7.4 \cdot 10^{-4}$

• Selection suppresses background for at least factor of 10, resulting in comparable results for background to signal ratio at ILC energies $\frac{B}{S} = (2.5 \pm 0.5) \cdot 10^{-4}$ at 500 GeV

$$\frac{B}{S} = (7 \pm 4) \cdot 10^{-4}$$
 at 1 TeV

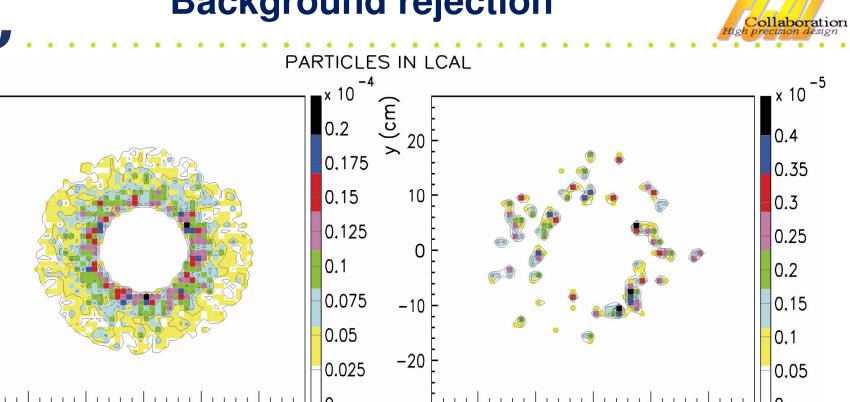
Visible impact of BDK cross-section at higher energies

(cu) 20

10

0

-10


-20

HEP

-20

-10

Background rejection

-20

-10

Projected hits, normalized per bunch crossing, on the first plane of luminosity calorimeter, for background at 500 GeV, before (left) and after (right) event selection

10

0

20

x (cm)

I. Smiljanić, FCAL Workshop, CERN, 21-22 Oct 2009

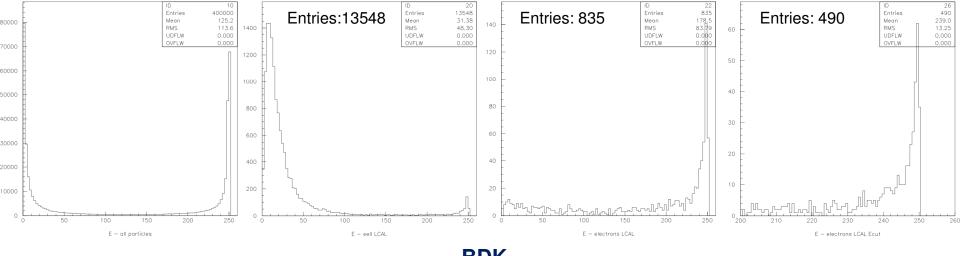
0

20

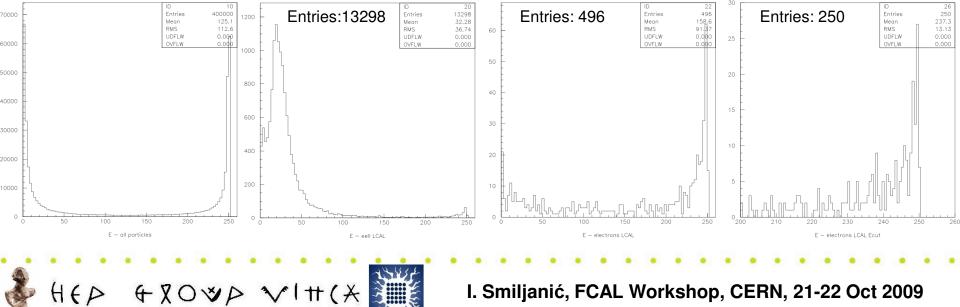
x (cm)

10

- 2-gamma processes have different topology in WHIZARD and BDK \rightarrow simple scaling game based on cross-sections does not work
- results are strongly influenced by statistics
- selection suppresses background for at least factor of 10, resulting in comparable results for background to signal ratio at ILC energies (~10⁻⁴ at 500 GeV and ~10⁻³ at 1 TeV)
- however, model error is increasing with energy as difference in crosssections between WHIZARD and BDK is more pronounced (~10⁻³ at 3 TeV estimated with WHIZARD might be somewhat optimistic)

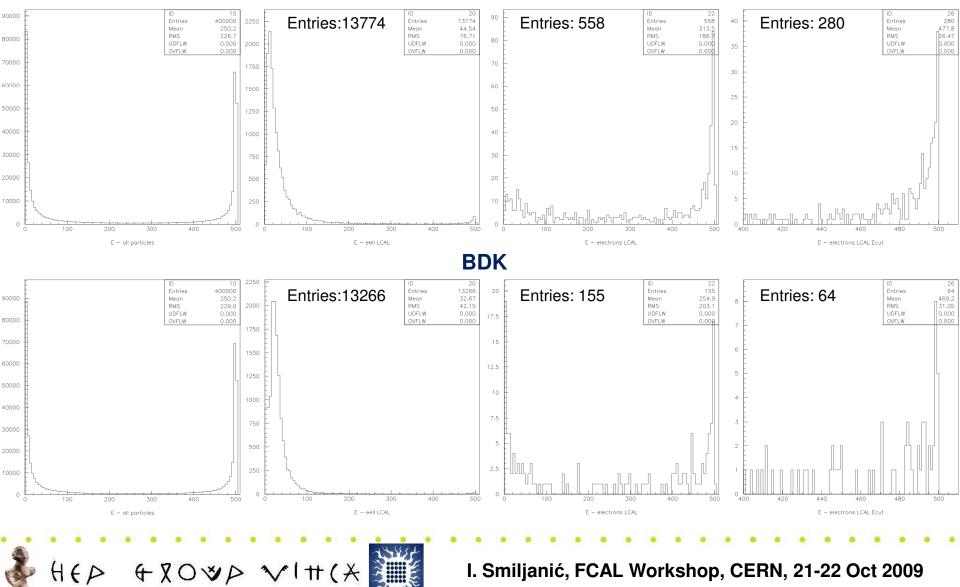


Backup slides

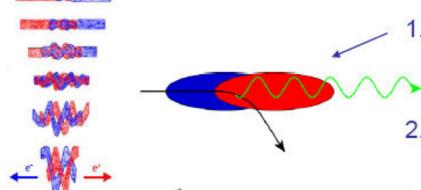


WHIZARD

BDK


I. Smiljanić, FCAL Workshop, CERN, 21-22 Oct 2009

ollaboration



WHIZARD

ollaboration

Beam-Beam effects at the ILC

1,--1326(mrad)

0.06

0.05

0.04

0.02

6.01

0

- High beam-beam field (~kT) results in energy loss in the form of synchrotron radiation (beamstrahlung).
- Bunches are deformed by electromagnetic attraction: each beam acting as a focusing lens on the other.

Change in the final state polar angle due to deflection by the opposite bunch, as a function of the production polar angle.

 Since the beamstrahlung emissions occur asymmetrically between e+ and e-, the acolinearity is increased resulting in a bias in the counting rate.

"Impact of beam-beam effects on precision luminosity measurements at the ILC" - C. Rimbault et al. (http://www.iop.org/EJ/abstract/1748-0221/2/09/P09001/)

v (mrad)

More systematics .

20.09

∿20(T

0.07

0.06

0.05

0.04

0.03

v (mrad)

Beam-beam interactions

- . Modification of initial state: Beamstrahlung → $\sqrt{s} \le \sqrt{s}$, $\Delta \theta_{ini} \ne 0$, $E_{elec} \ne E_{posit}$
- Modification of final state: Electromagnetic deflection →
 Bhabha angle reduction (~10⁻²mrad) + small energy losses

Total Bhabha Suppression Effect (BHSE) ~1.5%

Luminosity spectrum reconstruction

To control the \triangle BHSE from beamstrahlung at the level of 10⁻², variations in the rec. lumi spectrum $\triangle x/x$ need to be known with the precision of 4.10⁻³

Beam parameters control

Bunch length σ_z and horizontal size σ_x should be controlled at the 20% level to keep the \triangle BHSE from EM deflection at the level of 10⁻³

QUITE A TASK IN REALISTIC BEAM CONDITIONS...