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Top quark pairs at the LHC

Top quark physics is now a precision topic. Top quark pair production
calculations available at NNLO and with soft gluon resummation.

Total cross section:
[Czakon, Fielder, Mitov: '13, '14]

onnLo(pp — tt + X) ~ 800 pb
ONNLO+NNLL (PP — tt + X)) ~ 820 pb

[top++2.0]

LHC will have produced billions of tops after 3000 fb~'. The tails of
distributions may become important.



Top quarks at the LHC

[pb GeV]

do
dM(tf)

Data

Theory

LHC already beginning to probe high energy tails of ¢ distributions
[CMS-TOP-16-008] [ATLAS-CONF-2016-100]
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Top quarks and this talk

m The focus of this work is to address the impact of particular higher
order (beyond NNLO), logarithmically enhanced contributions to
top quark pair production.

m Particular emphasis on the the Pair Invariant Mass (PIM)
distribution, My, but we also study the top quark pr.

m We use factorisation theorems derived in Soft Collinear Effective
Theory (SCET) to deal with the multitude of scales present in this
process.



Fixed Order Calculations

Consider tt production at hadron colliders.

i(p1) + 3 (p2) — t(ps) + t(pa) + X (px)

With ij € {qq, Gq, g9} at leading order. With QCD factorisation, we can
write the differential cross section as:

Aoy, hy—itx (T) _ ' dz dc;j
—a - E ) — Lij(1/2,m5) gy r (25 asln), M e, g )
ij

ﬁz‘j(y)Z/ dg¢h1/i(x)¢hg/j(y/x)

s = (Phl +Ph2)2 §= (pl +p2)2 P

p3
M? = M}, = (p3 + pa)®

P4

M? M?
T = —— z = —
S S



Fixed Order Calculations

Calculating perturbative corrections to the process:
dé = a2 (d6' + ayds™ +a2de® +...)

Total and differential rates known to o
[Czakon, Heymes, Fielder, Mitov]
In computing higher order corrections, one encounters various logarithmic
corrections. In particular: threshold logs
P
Threshold:  af {ln(l—z)} , 0<p<2n—-1
1—-2 n
z2=M/$
Large contributions as z — 1.
Also encounter

Small Mass (collinear):  a; In? (%) ;

We expect these to be important for “boosted” tops, M2 >> m?



Factorisation: Goal

d*a 875y Lz
= —kLij ii(z, M .
dM dcos@  3sM 2 Lij(1/2)Cij(2, M, my, ..)

1j=(49,99,99)

The partonic cross section factorises in the z — 1 limit.
8, M7, m? >> 5(1 — 2)?

In Mellin moment space [Kidonakis, Sterman, 9705234]
Using the SCET framework [Ahrens, Ferroglia, Neubert, Pecjak, Yang: 1003.5827 |
Factorisation allows Resummation

H™, S™, matrices in colour space

H;; - Hard Function. Related to virtual corrections
S;; - Soft Function. Related to real emission of soft gluons.
Contains distributions singular in (1 — 2).



Factorisation: Booosted Tops

The boosted soft limit, 2z — 1 and M >> my,
5,11 >>m? >> 51— 2)? >>m2(1 — 2)?

logs of the form In(M/m;) become important.
Further factorisation in this limit. [Ferroglia, Pecjak, Yang: 1205.3662]

Cij = Te[HJ} (Mg, mu, g, ) ST (VE(1 = 2),me, pg, .)] + O(1 — 2)

M? >>m?

Cij =Ch(ma, py) Tr [HU(M, pr,-)Si(Va(1l = 2), py, )] ®sp (me(1 — z), py)
®sp (me(1— z), 1) ® cij(z,me, py) + O(1 — 2) + O (m¢ /M)
H: [Glover et. al: '00-'01]
Each of these functions S: [Ferroglia, Pecjak, Yang: 1207.4798]

known to two-loops sp, Cp: [Melnikov, Mitov: 0404143],
[Becher, Neubert: 0512208]



Soft Collinear Effective Theory

Soft Collinear Effective Theory allows one to deal with soft and collinear
d.o.f in the presence of a hard interaction.

Can be used to disentangle scales associated with different regimes in
collider physics: Agarp >> Ajgr >> AQCD-

Define two light-like vectors in the direction of the incoming partons,
t
n* = (1,0,0,1) -

At = (1,0,0,—1)

Use lightcone coordinates

n L
p'=(n-p)—+ @ -p)—5 + o

In deriving the factorisation theorem, |
will focus on the gq channel, the gg
channel follows similarly



Soft Collinear Effective Theory

In SCET, split fields into separate momentum regions.
p'u = (p+7p_7f)'L) = (n “p,n-D, ﬁL)

(@) = Ye(@) + Yelz) +

be(x) :pH ~ (N1, 0)Q
Ve(z) 1 p" ~ (1,A2,0)Q
P~ (A% 0%)Q
With A ~ (1 — 2) the expansion parameter of our effective theory.

Hard interactions absorbed in Wilson Coefficients.
We can do the same with the gluon fields: A# — A% + AY +

To leading power we only need  {.(7) = @zﬁc(x), &o(z) = %77&1/;5(@



Soft Collinear Effective Theory

It is important to note that the power counting in SCET gives rise to
non-local operators. This is due to the fact that certain derivatives of
operators are not power suppressed and must be included.

n-0&n(w) ~ /\Ogn(m)

All such derivatives are typically included via,
_ o
Eula +17) = > —(7-0)' & (0)

%

And so we will encounter operators of the type,

/dtl dto é(tl, t2) 773(.1' + tgn) T+ fn(l’ + tlﬁ)



Soft Collinear Effective Theory

For the purpose of top quark pair production at hadron colliders we need:

m Two sets of collinear fields for the incoming partons: &,, A
m Two heavy quark fields (HQET) for the tops: Ay, Ay,
m Soft fields for the soft interactions amongst the particles: A#

The lagrangian for interactions between the collinear fermions and the
soft gluons is, to leading power,

Low = ()2 g A,(@)6, (@) + 5()¢gn A2 (2)
g (2) 903 - An(2) B (2) + Ty (2) g 04 - Au(2) By (2)



Soft Collinear Effective Theory

The gauge transformations in SCET are somewhat more involved. But we
can construct gauge invariant operators to work with using Wilson lines.

Xn(@) = WH(2)en(x),  Ap(2) = W) [iD} Wy (2)]

where the Wilson line is defined using the collinear gluon field

0

W () = Pexp{ig/ ds - Ap(z + sﬁ)}

—0o0

It is also possible to decouple the collinear and soft interactions by means
of a similar field redefinition. For the collinear quark fields:

Xn = [Sa(@)] X (2)

S, () = ’Pexp{ig /Ooodt n- Ao+ m)}



Additional Operators

We will also need additional operators to describe our process,
qq(gg) — tt,

Hetr = / dty dty ™ (vstv) | G99 (1) 1,)0% 1 (gg)
I,m

0% = (1) &ula + tan) T En (@ + t172) B (2) Tty B, ()

m - labels Dirac structures, I,

a9 — 4m m
I - labels colour structures. E.g. (¢5"){a1asa5a2} = taya, tasas



Additional Operators

We can apply the decoupling relations from earlier to our effective
operators to arrive at the operator in a factorised form

Of (2,11, 12) = 1 [0, (2)] [OF, (x, 11, 12)] [O° ()]

(O ()] = Py (2) Ty, by ()
[O5, (w11, t2)] = & + tan) T, &n(x + ti7)

]
[0%(2)] = S, () S0, (2)Sh (2) S, (2)

3
Our squared matrix element:

2

| S i) X0l O2£(0) latin e} €1

Note: The colour indices for the soft Wilson lines are in general contracted
between the fermion fields and the colour structure terms. | am omitting
discussion regarding the colour structure.

|Cm) - Wilson Coefficient as a vector in colour space



Factorised Result

2

- ] S () p) Xa(p2)] OL(0) [a(p1)a(p2)) [Co)

Because the different fields in our operator no longer interact, the result
factorises..

do r~ Z { Nree ({Om)tree (Coul (01 TIOT ()] T[O* ()] 0) ICmf>}

With ((Om)) e = (t(P3)E(p4)] O71,(0) 05, (0) |g(p1)(P2)) ree

We obtain our hard function and position space soft function

H(M,my, c080, 1) ~ > (Om))iree [Cmr) (Con| (O ree

m,m’

W (z, 1) ~ (0] T[0! (2)] T[O°(x)] |0)

With W related to the momentum space soft function, S, after utilising
Fourier transforms in conjunction with the phase space integrals.



Boosted-Soft Factorisation

In order to derive our second factorisation formula, it is easier to start
from the cross section.

d*o 873y Ldz

- Vet i ,M, 5o

dM dcos®  3sM Z, ﬁJ(T/Z) i (2 My, ..)
ij=(49,99,99)

We employ a factorisation for a single top quark [Mele,Nason: Nucl.Phys. B361
626-644],

do dx dcra z
d t Z s My, [ Z/ $ y M, b )D((17;+nh) (;7mta/u’)

m d6,/dx - production of massless parton a

D((l/{) Heavy-Quark fragmentation function (o with ny flavours)



Boosted-Soft Factorisation

Utilising this twice, we obtain

CM(Z,M,mt,,U) = Zczt_l]b(z7M7uf) ® Da/t(z7mta:uf) ® Db/f(27mtauf)
a,b

® cﬁj(z, my, pg) + O(my /M)

We now take the soft limit of this.
ijb factorises as it did for the threshold case, but is now massless. So
the resulting hard and soft functions are independent of the top mass.

Cf]{ =Tr [Hij(MvtlvlJ'f)Sij(M(l - Z)atla :u'f)] + O(l - Z)
The fragmentation functions also factorise in the z — 1 limit.
Dt/t(z7mta ,LLf) = CD(mh/’[/f)SD(mt(l - Z),/,&f) + O(l - Z)

[Korchemsky, Marchesini:9210281, Cacciari, Catani: 0107138, Gardi: 0501257, Neubert:
0706.2136]



Mellin Space

For this talk, we are going to work in Mellin space. Convolutions become

products 3 }
d6(N) = L(N)C(N)
where
N 1 c+i00 ~
fo) = [dee @) g =g [ ava V)

In Mellin space, the z — 1 limit corresponds to N — oo

In"(1 - 2)
1—=2

Pn(z>=[ L N = Ne

M[Py] = —In N + O(1/N)

MIP] = % <1n2 N + ﬂ;) + O(1/N)

1 _ 2 —
M[P,] = -3 (m3 N+ N+ 2((3)) + O(1/N)



Aside: Parton Luminosity in Mellin Space

Our calculation requires parton luminosities in Mellin space. Normally
given in momentum space.

£ = [ Foun @asm(z/o

We approximate the luminosity in terms of Chebyshev polynomials
[Bonvini: 1212.0480] [Furmanski, Petronzio :164978]

%Zn: wil Zn: (;) Cr

i=0 min g—;

The Mellin transform gives

/deN 1£ ) Z( jﬁ)lﬂrl

where
B w I~k
Cp wfnm];(k_p);ck



Mellin Space

Our factorisation formula becomes

C(N) :C%(m,g7 pg) Tr

~ M?2
H(M, /,Lf, )S <1n W,Mf, )

x 8% <ln ]\Z;Lf’uf> &(In N, me, py) + O (1/N) + O (my/M)

We now have single scale functions.

Aside: Heavy flavour matching coefficient, Eﬁj, introduces additional In m
dependence which is not resummed. We add such contributions in fixed order.



Renormalisation Group Equations

Resummation is achieved by deriving and solving the RG equations.

Evaluate the hard and soft function at their natural scales, where
the perturbative expansion is well behaved.

Use RG equations to run both to a common scale where the
cross-section is evaluated.



Hard Function RG

Hard function RG equation: dl H I'yH + Hl“T

M?
qu - [CF7cusp (as) <1n ? a MT) + CFFYcuSp(ﬁ347 aS) + 27q<a5)

+27Q(as)}1l —I—g < _01 (1] ) [’ycusp(as)...] + ...

Yeusp - cusp anomalous dimension

B34 - cusp angle.

79,49 - incoming & outgoing quark anomalous dimensions.



Hard Function RG

d
dlnp

H=TyH+HI,

The solution can be written as

H() = U(pn, ) H(pn) U (i, 1)

which implies

dlnMU(uh, 1) = L (p)U (e, p)

This has the formal solution

Body!
U(pn, 1) ZPeXp{/ —Lf FH}
pn M



Hard Function RG

Pulling the piece proportional to the identity matrix out front gives
M2
U= eXP{QS(Mha 1) = ar(fih, 1) <1n T m) }U(Mhaﬂ)
h

Where w(pup, i) is the path ordered piece of the exponential.

as()  do o do/
S(pns ) = — / 27 Leusp(@) /
h ) s 41n) B(a) cusp( s (1) ﬂ(a’)
as(4)  doy

al"(ﬂhaﬂ) :_/( )Wrcusp(a)

da’s _

Since 5oy = dIn p, the above suggests S(pup, 1) resums double

logs while ar(pp, pt) resums single logs.



Soft Function RG

|
2

M=
do ~ Tr [Hij(Mtfa pigs-)Sij (hl NTZQ,M% ) }E(N) +0(1-2)
f

Since the hadronic cross-section should be scale independent, the RG
equations for the soft function can be derived from the knowledge of the
hard RG and DGLAP equations which govern PDF evolution.

2

M 2
nN2 2

N2

d
dln

S=-— |:Fcusp1 + ’YST:| S-S |:Fcusp1 + ’YS:|
v ="+ 2901

+¢ - PDF anomalous dimension.

Solved in the same way as the hard function



Resummed Results

Putting together our results form the RG equations we arrive at our

resummed cross section.
The result can be written as,

C(N) = exp{ (91 (hms M) + 9P s Ao Ap)

47
045(!%)
(9200 A7) + 98 s Ao Ap)) + }

x Tr |:11(M, cos 0, Hhs /'LS)H(M7 cos 0, p‘h)uT (M7 cos 0, Hhs /U’S)

_ M2 ~ 2
x 8 (ln Nz Micost us) }C%(mz,udws% ( oy 2 ,ud5>

Where,

N\ = Mﬁoln (‘u—h) u(M,cosO, up, ps) :'Pexp{{/#S ' (M, cos 0, (' ))}
wn M ,

2T g h
We can pick the scale for each function to free it of large logs.

pn ~ M, ps ~ M/N, pan ~ my and pgs ~ my/N



Resummation accuracy

Schematically,
Boosted soft:

O et } Tr [uHm) uf Sws)} C2 (e, an)5 (1)

47
C(N) = exp {—m +2+
Qs 47

Soft:

4 -
CV) = oxp { STa + g5+ S0 o p T [ H () ! 87 )
S

To achieve a given resummation accuracy

gi Th H™ 50" ¢p,3p
NLL g1, g2 LO LO

NNLL | g1, g2, g5 | NLO | NLO

NNLL’ | g1. g2, g5 | NLO | NNLO

In this work we work to NNLL accuracy for the soft resummation and NNLL’ for the
boosted soft resummation.



Mellin Inversion

To obtain results in momentum space, we need to invert the Mellin

transform "
do(t) 1 [ _n d&(N)
dM dcos® 27Ti/c 400 N T dM dcos 6

With ¢ to the right of all singularities. But our resummed coefficient
function contains (exponentiated)

To
460

Since we pick pus ~ M/N, pole at A\, =1

91006, M) = —2% (1= In(1 = A)+As In(1 = Ap))]  As = O‘S(“h)ﬁ In (u )

2w
Ny, :exp{a 50}




Minimal Prescription

m We need to select a method to
deal with the Landau pole.

m We use the Minimal Prescription:
Select our point on the real axis
to be to the left of the Landau
pole, but to the right of all other

Im N

N

singularities in the integrand.
[Catani, Mangano, Nason, Trentadue '96]

do(T) 1

_Go\r) L -N
dM deosf 27 Jyp,, N TP LIN)CN)

/



Combining and Matching with NNLO results

We wish to combine the results from the two separate
resummations and match these with recent NNLO calculations
[Czakon, Fiedler , Heymes, Mitov]

Matching:

dop ~ boosted soft factorisation

dOThreshold ~ threshold factorisation

Adds in parts subleading in m /M
but enhanced by In N

NNLO+NNLL" __ NNLL’ NNLL NNLL
do = doy + | d0Threshold  — A0y )
~— N— Hdh=[th
Missing parts subleading Missing parts Hds=}ts
in m¢/M and 1/N subleading in 1/N Removes double
counting
+ [ doNN-© — dah't';';'[ine,,
NNLO
expansion

Adds exact NNLO results,
avoiding double counting



Distributions: M,
pp = My /2
E =1 U/} NNLO+NNLL'
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Distributions: M,

up=Hr/A, (Hr = \Jm?+p3, +\/m} +12,;)
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Distributions: My

M, (GeV)
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Comparison with Threshold Resummation

m So far we have only looked at the results of the combined resummed
result matched with standard threshold resummation.

m We can compare these results with what one gets from performing
just threshold resummation.
uh=us=uf>

Hdh=Hh )
Hds=

Hs

NNLO+NNLL __ ; NNLL NNLO NNLL
dogoft Res = dOThreshold T (dU — dOThreshold

Join Res

NNLO+NNLL _ ; NNLL NNLL NNLL
do =do, — + (dUThreshold — doy,

NNLO NNLL
+ | do —do L
top line NNLO

expansion

Note: We compute only to NNLL here for both cases for a fair comparison.



Comparison with Threshold Resummation
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Comparison with Threshold Resummation
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Distributions: pp

pp =mr/2, (mT = \/m? +p%,t>

(pb/GeV)

T,avt

do/dp
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Conclusions & Outlook

Presented factorised differential cross sections:
m Threshold resummation (z — 1)
m Boosted Soft resummation (z — 1, My >> my)

Combined these and matched with fixed order NNLO results,
NNLO-+NNLL’

Results for My, and pr distributions at 13 TeV LHC

Resummed results for the My; distributions are less sensitive
to the scale choice



EXTRA

BACKUP SLIDES



Total Cross Section

We can also look at the effect on the total cross section

[ LHC13TeV | NNLO | NNLO+NNLL' |
o(ps =mr) | T91.8 T | T87.8 1775,

o(py =mr/2) | 8275 155 | 808.9 *i3

olpg = My/2) | 7794 1555 | 793.8 15

o(ps = Hr/4) | 828.0 Ts5s 809.3 1398
o(pg =my) [ 802.7 1355, —

o(py = my/2) | 830.8 55 —

top++ can perform NNLL threshold resummation.

O,NNLO-‘FNNLL(Mf — mt/2) — 8277i82



Momentum v Mellin Space: (old result)
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Comparison with experimental data: (old result)

~ 10
3 E 17772 NLO+NNLL'
% C N NLG
2 - —— ATLAS (I+)
s [
< 1% m;=173:2'GeV
© = LHC 8 TeV
C [2227224] = (1/2,1,2) Mg
L [NNNANNY
CLLLAELEEE
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[ATLAS: 1511.04716]
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