Precise Measurement of Gas Parameters in RPC Probes with Laser Induced Electrons

X. Fan, B. Kämpfer, R. Kotte, L. Naumann, M. Siebold, M. Sobiella, D. Stach

HZDR

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Dr. Lothar Naumann | Institute of Radiation Physics | www.hzdr.de

Introduction

- Application of UV laser beams for calibration and surveying of gas filled wire chambers since 1979
 [M. Anderhub et al. NIM 166 (1979); RPC: E. Gorini et al. NIMA 425 (1999)]
- RPC operating in strong and homogeneous electric fields at atmospheric pressure
 - Trigger RPC \sim 50 kV/cm gap size \geq 1mm
 - Timing RPC \sim 100 kV/cm gap size \leq 0.5 mm

 Micro-plasma creation and positioning inside a sub-millimeter narrow gas gap for RPC research since 2009

[50kV/cm: G. Chiodini et al. NIMA 602 (2009); P. Fonte et al. NIMA 613 (2010); 100kV/cm : L. Naumann et al. JINST 9 (2014) C10009]

Introduction

Transport parameter measurements in narrow gap samples

Gas	P [Torr]	Gap [mm]	E _{max} [kV/cm]	v _d	α, η	Ref.
IB, N ₂	760	1.5	50	-	m, s	Lima et al., NIMA 670 (2012)
IB	7	3.0	2.1	-	m	Nakhostin et al., NIMA 615 (2010)
IB, N ₂	760	0.5	50	m, s	m, s	Fonte et al., NIMA 613 (2010)
RPC _{mix1}	760	2.0	54	m, s	m, s	Chiodini et al., NIMA 602 (2009)
IB, methane	10 – 30	1.6	6.25	-	m	Tsumaki, Jap. J. AP V. 27 N.3 (1988)
RPC _{mix2}	760	0.3	100	m	m	Naumann et al., JINST 9 (2014) C10009
IB - isobutane RPC _{mix} - freon, IB, SF ₆				m - m s - sir	easureme mulation	nt

Effective Townsend coefficient

Seite 4

Dr. Lothar Naumann | L.Naumann@hzdr.de | Institut of Radiation Physics | www.hzdr.de

The Townsend Puzzle

HZDR Laser Facility

Mitglied der Helmholtz-Gemeinschaft

HZDR Laser Facility

Mitglied der Helmholtz-Gemeinschaft

HZDR Laser Facility

Mitglied der Helmholtz-Gemeinschaft

Trigger-RPC: 50 kV/cm; 1.0 mm

Efficiency: 100% Time resolution: 700 ps rel. charge deviation: 28%

charge vs. laser intensity

Proportionality of charge(Q), number of primary electrons(N_e) and intensity(I^x) :

$$Q \sim N_e \sim I^x$$
$$x > 2$$

→ double-photon-ionization

Timing-RPC: 100 kV/cm; 0.3 mm

Efficiency: 100% Time resolution: 50 ps rel. charge deviation: 7%

eff. Townsend coefficient

Increment : 2 μm

The effective Townsend coefficient is independent on the number of primary electrons(N_e)

$$\alpha_{eff} = const.$$
 for $Q \sim N_e \sim I^2$

no space-charge effect

α_{eff} Timing-RPC: 100 kV/cm; 0.3 mm

Float glass sample $\tau = \varepsilon_0 \varepsilon \rho = (3\pm 0.5)s$

 $r_{drift} \leq 50 \ \mu m$

- The eff. Townsend coefficient depends on the laser repetition rate.
- The Time constant of the float glass sample is in agreement with the data.
- Data reach the horizontal asymptote at \leq 0.1 Hz.
- The ionisation occurs always at the same microvolume and the charges are accumulated on the same area of the electrode surfaces → 0.1 Hz/(aval. area) is comparable to ≥ 1kHz/cm²

Effective Townsend coefficient (1)

Effective Townsend coefficient (1)

Effective Townsend coefficient (2)

Effective Townsend coefficient (2)

Summary

Overview of transport parameter measurements

Gas	P [Torr]	Gap [mm]	E _{max} [kV/cm]	V _d	α, η	Ref.
IB, N ₂	760	1.5	50	-	m, s	Lima et al., NIMA 670 (2012)
IB	7	3.0	2.1	-	m	Nakhostin et al., NIMA 615 (2010)
IB, N ₂	760	.5	50	m, s	m, s	Fonte et al., NIMA 613 (2010)
RPC _{mix1}	760	2.0	54	m, s	m, s	Chiodini et al., NIMA 602 (2009)
IB, methane	10 – 30	1.6	6.25	-	m	Tsumaki, Jap. J. AP V. 27 N.3 (1988)
RPC _{mix1;2}	760	.3, .5, 1.0	45 - 100	m	m	X. Fan, PHD thesis in prep.
IB - isobutane RPC _{mix} - freon, IE	3, SF ₆		m - s -	measuren simulatior	าent า	

Summary

- Upgrade of the laser driven facility for detector tests under atmospheric pressure and highest homogenious electric fields of up to 100 kV/cm
- Comparision of the eff. Townsend coefficient for Freon(94.7%)+IB(5%)+SF₆(0.3%) at 50 kV/cm, at the highest available field up to now shows an agreement for ALICE and HZDR experiments and MAGBOLTZ simulations
- Solution of the Townsend puzzle for Freon(85%)+IB(5%)+SF₆(10%) at 100 kV/cm MAGBOLTZ overestimates the eff. Townsend coefficient by factor of 2

Outlook

- Investigation of RPC rate capability test with low resistive RPC
- Investigation of RPC double hit behavior
- Evaluation of environmentally friendly gas mixtures for RPC application

