Performance Study of HL-LHC ATLAS RPC Prototype

Giulio Aielli2, Roberto Cardarelli2, Liang Han1, Quanyin Li1

1. University of Science and Technology of China (USTC, CN)
2. INFN e Universita Roma Tor Vergata (IT)

Speaker: Quanyin Li

2018.02.21
In the future, the instantaneous luminosity of LHC will reach a very high level. RPC in current ATLAS cannot afford so high current.

New type of RPC with 1 mm gas gap, 1.2 mm electrodes and new high sensitivity front end electronics, has been designed for the HL-LHC ATLAS upgrade program.

- Lower current in gas gap
- Higher time and spatial resolution
- Less dead time and smaller dead region
- Suitable for the narrow space

A chamber consisting of a triplet of 50x100 cm2 RPC was performed a beam test in Gif++

A full analysis has been done to study the performance
Beam Test in Gif++

- **Beam&Source**
 - Data taken with muon beam and gamma intensity up to 20 kHz per cm² estimated counting rate
 - Beam: Circle with diameter ~10cm
 - Beam rate: ~10k/spill (1 spill is about 3s)
 - Chamber distance 4.72m
 - Source full intensity: 13.9 TBq ^{137}Cs
 - Absorption factor: $X=3.3, 10, 22, 46, 100$ (intensity attenuated by $1/X$)
 - Extend doublet test to triplet test

- **Electronic system**
 - Readout strips, amplifier inside the chamber box
 - Chamber A, B and C
 - 8 most-central readout channels along both X and Y
 - Waveform is 1024 points and 0.4ns resolution
Waveform of a random trigger

- **Photon signal:**
 - Random time in waveform
 - Small amplitude
 - Hit in single chamber

- **Muon signal:**
 - 200ns before coincidence trigger
 - Large amplitude
 - Hit in double chamber
 - Rate: ~40Hz/cm² (Only 1 signal in 400ns time window)
Effective HV is the voltage applied to gas.

EffectiveHV = AppliedHV – Current * ResistanceOfBakelite

Charge per event are larger than expected while the photon rate is lower. Correlated with threshold, gas gap and electronic system.
• Working Region in HV>5400
• High efficiency in plateau region: ~98%
 *ABS factor 22 (the green line) is similar with the real situation of LHC(600 Hz/cm² in BI region)
Time Resolution

Time difference between signals in 2 chambers. (time pass threshold)

- Electrons drift speed has a large fluctuation
- Region in HV>5400V : RPC has a good working condition
- Time resolution around 400ps
Hit position

Amplitude vs Strip

Position distribution by fit

- Hit position is got by fitting amplitude vs strip \(f(x) = a(|x| - b)^c + d \)
- The distribution is similar to be an uniform distribution
Spatial Resolution

Position difference between signals in 2 chambers.

- Spatial resolution by fit: 0.1 cm
Cluster size modification

- Observed in doublet chambers, cluster size is very large
- Modification to chambers:
 - Surface resistivity of graphite layer: 120kOhm/square to 620kOhm/square
 - Optimize the terminal resistance
 - Isolate the strips by metal wire
- Cluster size improved
- Preliminary result
Cross-talk study

- **RPC chamber structure**
 - 3 Singlet to 1 triplet

- **Advantages:**
 - Save space
 - Coincidence trigger by itself
 - Combined measurement

- **Method:**
 - Keep 1 chamber on, 1 chamber off. Calculate the efficiency of the off chamber.

- **Result:**
 - For muon:
 - Only 1 random coincidence in 10k signals
 - For gamma:
 - Only 1 random coincidence in 20k signals
Summary

- RPC Prototypes for HL-LHC work in a good condition
 - Efficiency in plateau region: ~98%
 - Time resolution: 400ps
 - Spatial resolution: 0.1cm
 - Cluster size has been improved to a much better result
- Study of cross talk in triplet chambers
- Study the work condition of triplet chamber as a trigger model
Backup
Charge distribution for muons in different HV

Amplitude is proportional to the charge.

18/2/21
Quanyin Li (USTC)
Charge distribution

Entries: 806
Mean: 46.01
Std Dev: 41.92

Charge distribution for different voltages:
- charge_4600V
 - Entries: 806
 - Mean: 46.01
 - Std Dev: 41.92
- charge_4800V
 - Entries: 2637
 - Mean: 86.72
 - Std Dev: 98.24
- charge_5000V
 - Entries: 6689
 - Mean: 180.9
 - Std Dev: 175.8
- charge_5200V
 - Entries: 7027
 - Mean: 377.6
 - Std Dev: 273.6
- charge_5400V
 - Entries: 8126
 - Mean: 678.7
 - Std Dev: 358.1
- charge_5600V
 - Entries: 8201
 - Mean: 958.5
 - Std Dev: 379
- charge_5800V
 - Entries: 7500
 - Mean: 1203
 - Std Dev: 364.7
- charge_6000V
 - Entries: 9166
 - Mean: 1377
 - Std Dev: 345

Amplitude (counts) vs. Entries for different voltages.

4600V
4800V
5000V
5200V
5400V
5600V
5800V
6000V

Quanyin Li (USTC)
Efficiency vs threshold

Graph

Efficiency

HV[V]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

thd 4*sigma
thd 5*sigma
thd 8*sigma
thd 11*sigma
thd 14*sigma
thd 17*sigma
thd 20*sigma
thd 25*sigma
thd 30*sigma
thd 40*sigma
thd 55*sigma
thd 75*sigma
thd 100*sigma

4600 4800 5000 5200 5400 5600 5800 6000
Fit by time pass threshold

18/2/21
Quanyin Li (USTC)