

Context	Aging	Big Size Chambers	Conclusion
000000			
improved Resistive Plate Cham	bers		

improved Resistive Plate Chambers

- To sustain the particle flux in the RE3/1 & RE4/1 regions : ${\sim}700\,\text{Hz}\,\text{cm}^{-2}$

 \Rightarrow Must be qualified for 2 kHz cm⁻² (×3 security factor). Reduce the produced charge and evacuate it faster.

Doped GRPC : one of the options considered in CMS TP

Combines all opportunities for improvement :

- Reduce the charge q created by the avalanch : Reduce the gas gap 2 mm $\rightarrow \sim \! 1 \, \rm mm.$
- Reduce the electrode thickness d : $2 \, \mathrm{mm}
 ightarrow 1 \, \mathrm{mm}$
- Reduce the electrode resistivity : Low Resistivity Glass (Tsinghua University) 1 to 5 × 10¹⁰ Ω cm.
- Fast electronics with low noise (Omega, IPNL).

Context ○○●○○○○

Aging 000 Big Size Chambers

Conclusion O

This R&D is the continuation of the one presented in RPC2016 : High rate, fast timing RPC for the high η CMS muon detectors

High rate, fast timing RPC for the high η CMS muon detectors

GHENT UNIVERSITY, BELGIUM / FEB 22 - 26, 201

François Lagarde

IPN-Lyon

For the CMS-RPC groups

Proceeding : Here

Context ○○○●○○○ Small prototype of GRPC	Aging 000	Big Size Chambers 00000	Conclusion O
Bulk resi Thickness	Characteristics stivity : $10^{10} \Omega$ cm as : 0.5 mm to 2 mm as Uniformity : 0.02 mm		
RoughneOhmic b	ss : $<10 \text{ nm}$ ehavior : stable (1 C cm ⁻²) sizes : $32 \text{ cm} \times 30 \text{ cm}$		2
1	e Gap Chamber e Thickness 1 mm 1.2 mm	Electronics HARDROC2 (64 chan 	nels)
	ode glass (Inmi) + resistive coating	 3 thresholds Dynamical range : 10	fC-15 pC

• 1 cm×1 cm Pads

/ Mylar⊛ (50µm)

 \bigcirc

Glas gap (1.2mm)

Mylar® (175µm) Ceramic ball spacer

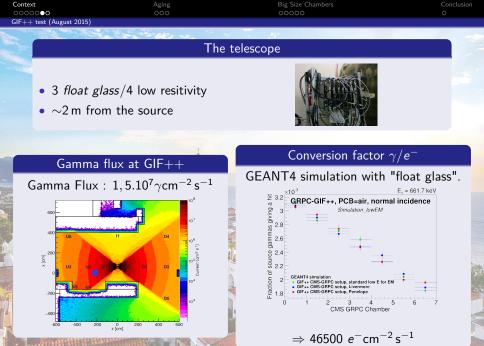
*

Glass fiber frame (1.2mm)

Context

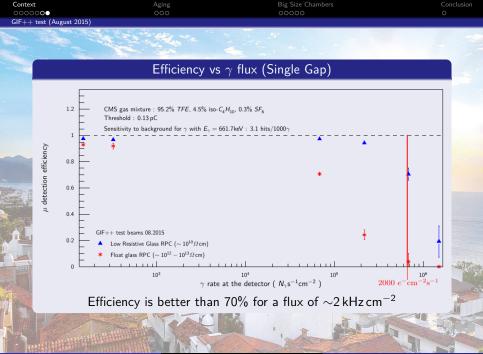
Context	Aging	Big Size Chambers	Conclusion
0000000			
GIF++			
The second s	S. 64. U.F. 7867		

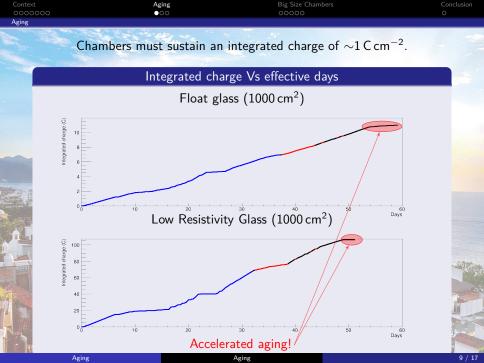
GIF++

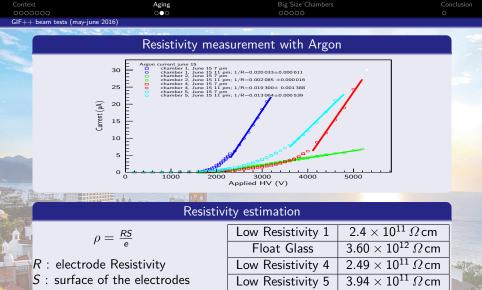

- Installed on the H4 line (SPS).
- muon beam 100 GeV
- Radioactive source : ¹³⁷Cs (13 TBq)

The Radioactive source

- γ 661.7 keV
- 2 independant attenuators : 3 planes of 3 filters ⇒(Attenuator factor 1–46000)
- Angular corrector filter : uniformity of the flux along the xy plane







Context

7 / 17

e : electrode thicknesses.

Resistivity is much higher than expected ${\sim}1\times10^{10}\,\varOmega\,{\rm cm}$ to $5\times10^{10}\,\varOmega\,{\rm cm}$. Resistivity mesurement in laboratory on bare electrode increased by ${\sim}\times2$ after $1\,{\rm C\,cm^{-2}}$

0000000 00000	
000000 000 0000	

Inside of one chamber

- no more spacers !
- some deposits

Could explain :

- High Resistivity
- The hit distributions

Possible Causes

- Humidity contamination (droplets observed)
 - \Rightarrow switch from plastic to copper pipes
- Isobutane polymerisation ⇒ deposits
- hydrofluoric acid attacks
 - \Rightarrow fluorosilicic acid deposit (H_2SiF_6)

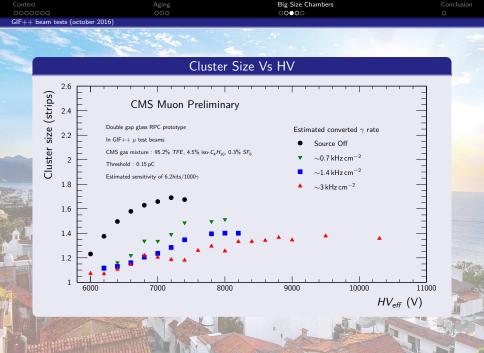
Context 0000000 Big Size Chambers	Aging 000	Big Size Chambers ●○○○○	Conclusion O
		ve limited size:32 cm×30 cm Chambers (1.1 m×60 cm)	
		Mechanical Fixing Metho	d
Glui	ng Method		

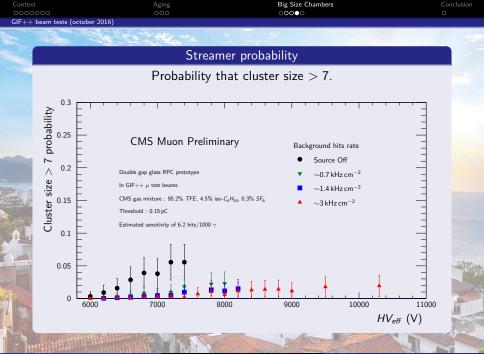
Hermetic gaps.

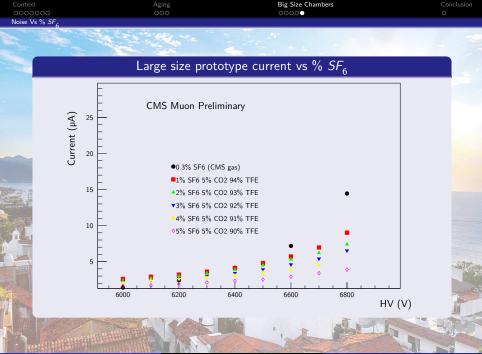
The cassette is hermetical.


10 mm

Context	Aging	Big Size Chambers	Conclusion
		00000	
GIF++ beam tests (october 20	016)		
Construction of the second	5. S.M. 2.5 TRAT		


Setup


- mechanical fixation
- Double gap
- CMS electronics, strip pitch : $\sim 1\,{\rm cm}$
- DAQ from CMS at GIF++



 ${\sim}5\%$ of the inefficiency is coming from geometrical acceptance.

Big Size Chambers

Big Size Chambers

Conclusion	•
Big Size Chambers	
Aging	
Context	

Conclusion

- First R&D with doped glass for CMS.
- Low Resistivity glass sustain the expected RE3/1 et RE4/1 fluxes.
- Big Chamber can be build with $32 \times 30 \text{ cm}^2$ glass (2 methods).
- The percent of SF₆ seems determinant for the noise reduction.

Final Statements

- If one wants to make double gap detectors with doped glass electrodes and low level of SF6 more R&D is required.
- Double gap Backelite detector with thin electrodes was proven to fulfill the Scope statements. Therefore, this technology was retained as baseline for the CMS Muon TDR.
- Multi-gap doped glass RPC detector shows good results with CMS gas. See Yancheng Yu talk : *Performance of a real-size Mosaic MRPC developed for CMS upgrade*