

R&D studies on eco-friendly gas mixtures for the ALICE Muon Identifier

Antonio Bianchi

on behalf of the ALICE Collaboration

RPC workshop 2018

Puerto Vallarta — 21st February 2018

Outline

- R&D on eco-friendly gas mixtures for Resistive **Plate Chambers (RPCs):**
 - → goal: a non-flammable mixture without greenhouse gases
- **Characterization of mixtures with HFOze:**
 - → replacement of tetrafluoroethane with more eco-friendly gases
 - HFOze and CO₂ could act for a good solution instead of C₂H₂F₄

- Operation stability of RPCs with CO₂-based mixtures:
 - → replacement of isobutane with non-flammable gases in

C₂H₂F₄-based mixtures

ALICE Muon Spectrometer Trigger Chambers

Motivation

RPCs in the ALICE Muon Trigger are currently operating in maxi-avalanche mode at ~10300 V with:

Global Warming Potential (GWP): is the relative measure of how much heat a greenhouse gas traps in the atmosphere. $GWP_{CO2} = 1 \text{ by definition}$

Motivation for R&D studies on new gas mixtures for the forthcoming Muon Identifier at ALICE:

- security reasons: the current gas mixture is flammable
- reduction of greenhouse gas emissions into the atmosphere: the present gas mixture has a GWP = 1350
- cost saving: C₂H₂F₄ is being phased out by EU restrictions; SF₆ is banned except for research → possible rise of prices and limited future availability → the gas volume at ALICE is quite small (about 0.3 m³), nevertheless an alternative gas mixture is welcome
- the upgrade of front-end electronics is planned in view of Run 3 and enables to operate the RPCs in avalanche mode (talk: A. Ferretti, "The upgrade of the RPC-based ALICE Muon Trigger", RPC workshop 2018).

We have just started R&D studies on gas mixtures for possible upgrades in the future.

Experimental approaches

95% of the total GWP for the current ALICE mixture is due to the presence of C₂H₂F₄:

- hydrofluoroolefins (HFOs) may be appropriate candidates to replace C₂H₂F₄, thanks to their very low GWPs:
 - HFOze and CO₂ could act for a good solution instead of C₂H₂F₄
 - chemical structure of HFOze (C=C-C) suggests a good capability to absorb photons
- experimental tests are ongoing in Torino to:
 - check the RPC performance with new eco-friendly mixtures
 - identify some promising gas mixtures for the requirements of the ALICE Muon Identifier
- as next step, long-time stability tests of new gas mixtures to check rate capability and performance (aging issue)

The high concentration of iC₄H₁₀ makes the ALICE mixture flammable:

CO₂

- ongoing tests with CO₂ instead of iC₄H₁₀ to avoid the use of flammable gases:
 - → non-flammable components would be advisable to make the operation of detectors simpler and safer
- medium-term stability of detectors has been tested with cosmic-ray flux

HFOze

Guideline for HFOze and CO₂

HFOze:

- tetrafluoropropene (*C*₃*H*₂*F*₄):
 - → it is an **olefin** (double bond in the chain of carbon atoms)
 - \rightarrow two isomers (z = hydrogen atoms on the same side, whereas e = hydrogen atoms on opposite side)
 - → isomers **z** and **e** have slightly different physical proprieties (i.e. boiling points) but similar electrical properties; different batches can contain different concentration of HFOz (10-30%)
- GWP < 1 (revision at 5th IPCC)
- it is not flammable at room temperature
- the strong electron attachment makes HFOze a promising gas for electric insulation:
 - → in particular for high voltage gaseous insulation equipments (doi:10.1088/0963-0252/25/4/045005)

Carbon dioxide:

- CO₂
- GWP = 1 by definition
- it is not flammable
- cluster density = 34/cm
- ionization potential = 13.8 eV
- photon absorption > 11 eV
- · weak attachment coefficient

photoabsorption cross section for CO₂ (qq) 100 100 40 20 x 10 10 12 14 Photon energy (eV)

cross sections between electrons and CO₂

Experimental set-up

R&D studies on eco-friendly gas mixtures:

- two small-size (50 x 50 x 0.2 cm³) RPCs inside a Faraday cage
- read-out strips (2 \times 50 cm²) which are terminated with 50 Ω resistors
- trigger: four scintillators coupled with photomultipliers
- the HV is applied with temperature and pressure correction
- gas mixture:
 - → possibility to mix at maximum 4 different gases
 - → it is dry: the resistance of bakelite is kept optimal, flowing the RPCs with wet mixture every 10/15 days

Signal analysis

Three regions for the signal analysis:

- the pedestal region to define the voltage baseline
- the signal region to calculate the charge and the amplitude
- extended signal region to check possible after pulses

Thresholds used for the analysis:

• efficiency:

Q_{induced} > 0.3 pC and amplitude > 3 mV (corrected by baseline)

streamer: Q_{induced} > 3 pC

Characterization with standard mixtures

ALICE mixture $(C_9H_2F_4/iC_4H_{10}/SF_689.7/10.0/0.3)$:

efficiency

* streamer probability

ATLAS-CMS mixture ($C_2H_2F_4/iC_4H_{10}/SF_6$ 95.2/4.5/0.3):

efficiency

* streamer probability

The RPC has been characterized with the most common gas mixtures used at LHC

→ no hints of negative effects observed (same efficiency curves and no increase of current during the test)

Mixture Ar/HFOze/i C_4H_{10}/SF_6 (40/49/10/1):

efficiency on 06/11/2017

for 9 days RPC off (gas flow = 50 cc/min)

efficiency on 15/11/2017

for 9 days RPC at 10500 V (gas flow = 50 cc/min)

efficiency on 24/11/2017

ALICE mixture (C₂H₂F₄/iC₄H₁₀/SF₆ 89.7/10.0/0.3):

efficiency

* streamer probability

Mixture CO₂/HFOze/iC₄H₁₀/SF₆ (44.5/45.2)10.0/0.3):

efficiency

* streamer probability

Mixture CO₂/HFOze/iC₄H₁₀/SF₆ (44.5/45.2/10.0/0.3):

- the concentrations of iC₄H₁₀ and SF₆ are equal to the ones in the ALICE mixture
- 89.7% C₂H₂F₄ has been replaced by 44.5% CO₂ and 45.2% HFOze
- the working point is shifted by about 1500 V and the streamer probability is increased

Mixture CO₂/HFOze/iC₄H₁₀/SF₆ (44.5/45.2/10.0/0.3):

efficiency

streamer probability

Mixture CO₂/HFOze/iC₄H₁₀/SF₆ (44.5/44.5/10.0/1.0)

efficiency

streamer probability

Mixture $CO_2/HFOze/iC_4H_{10}/SF_6$ (44.5/44.5/10.0/1.0):

- · 0.7% increase of SF6 → working point: + 500 V and streamer probability (@ eff. = 90%) < 5%
- **GWP = 223:** six times lower than the current ALICE mixture (1350)

Mixture CO₂/HFOze/iC₄H₁₀/SF₆ (44.5/44.5/10.0/1.0):

efficiency

streamer probability

Mixture CO₂/HFOze/iC₄H₁₀/SF₆ (39.5/44.5/15.0)1.0):

efficiency

streamer probability

Mixture CO₂/HFOze/iC₄H₁₀/SF₆ (44.5/39.5/15.0)1.0):

efficiency

streamer probability

Increasing the concentration of iC_4H_{10} :

- same concentration of HFOze as the previous mixture → small change in working point; slightly increase of streamers
- 5% decrease of HFOze → working point: + 500 V and streamer probability (@ eff. = 90%): 25%

Ratio between CO₂ and HFOze changes:

- if the concentration of **CO₂ increases**, the working point decreases, whereas the streamer probability increases up to 10% (with efficiency equal to 90%)
- if the concentration of CO₂ is equal to 55.5%, the current is not stable at constant voltage

The addition of CO₂ into HFO-based mixtures reduces the working point:

• +10% of $CO_2 \rightarrow$ -1000 V in working point but unstable current if $CO_2 = 55.5\%$

CO ₂ (%)	HFOze (%)	iC ₄ H ₁₀ (%)	SF ₆ (%)	CO ₂ /HFOze	working point	stable current
44,5	44,5	10	1	1,00	11902 V	yes
50	39	10	1	1,28	11306 V	yes
55,5	33,5	10	1	1,66	10981 V	no
39,5	44,5	15	1	0,89	11851 V	yes
44,5	39,5	15	1	1,13	11349 V	yes
44,5	50,7	4,5	0,3	0,88	11734 V	yes
50	45,2	4,5	0,3	1,11	11448 V	yes
44,5	45,2	10	0,3	0,98	11391 V	yes

Promising mixtures

ALICE mixture $C_2H_2F_4/iC_4H_{10}/SF_6$ (89.7/10.0/0.3):

• efficiency

* streamer probability

Mixture $CO_2/HFOze/iC_4H_{10}/SF_6$ (44.5/44.5/10.0/1.0):

• efficiency

* streamer probability

Mixture $CO_2/HFOze/iC_4H_{10}/SF_6$ (50.0/39.0/10.0/1.0):

• efficiency

* streamer probability

Issues:

- the working point stays high
 (threshold = 3 mV and minimum charge = 0.3 pC)
- in some gas mixtures, the streamer probability is too high (charge signal > 3 pC)

However:

- the new front-end electronics (with amplification) allows to achieve the maximum detector efficiency at lower values of electric field, in which streamers have smaller chance to develop
 - → hints of stability problems have been observed with large amount of CO₂ (to be investigated further)

Stability of RPCs without flammable gases

Motivation: necessity to remove flammable gas in the current ALICE mixture, in particular we evaluated whether the CO₂ might have been a suitable substitute of iC₄H₁₀

Experimental set-up:

- for the data acquisition, the standard ALICE front-end electronics has been used (threshold = 7 mV, no amplification)
- trigger on cosmic-ray flux (4 scintillators in coincidence)
- in the gas mixture, the only replacement is the use of CO2 instead of iC4H10 in different concentrations
- the gas mixture is wet (the mixture bubbles in water at 10° C)

Operation of RPCs with CO₂-based mixtures

After the characterization of RPCs with ALICE mixture, we changed the iC₄H₁₀ with different concentrations of CO₂:

Issues:

- the cluster size with CO₂-based mixtures results in being higher than with the current ALICE mixture
- CO₂ does not appear to be a suitable photon quencher to replace iC₄H₁₀ in C₂H₂F₄-based mixtures

Mixtures:

- ALICE mixture $C_2H_2F_4/iC_4H_{10}/SF_6$ (89.7/10.0/0.3)
- $C_2H_2F_4/CO_2/SF_6$ (96.7/3.0/0.3)
- C₂H₂F₄/CO₂/SF₆ (94.7/5.0/0.3)
- C₂H₂F₄/CO₂/SF₆ (89.7/10.0/0.3)
- C₂H₂F₄/CO₂/SF₆ (75.7/24.0/0.3)

Operation stability of RPCs with ALICE mixture

After about two months of operation with CO₂ in C₂H₂F₄-based mixtures:

- the efficiency curve is shifted by about 100 V
- a huge increase in current has been observed

The issue on the operation stability is under investigation:

gas quality, environmental conditions, humidity, chemical reactions between bakelite/linseed oil with CO₂, chemical reactions between CO₂ and the other components of mixture, damages due to the high photons flux and etc.

Conclusions and outlooks

• R&D on eco-friendly gas mixtures:

- → goal: to have a non-flammable mixture without greenhouse gases (at least with a low GWP)
- → HFOze is a possible candidate to substitute C₂H₂F₄, thanks to its low GWP
- → interest to substitute totally or partially iC₄H₁₀, because it is a flammable gas

Characterization of mixtures with HFOze:

several tests on HFO-based mixtures with addition of various gases are ongoing and encouraging results have already been obtained (i.e. addition of CO₂):

- the addition of CO₂ to HFOze is required to operate at lower values of electric field
- some of HFOze/CO₂-based mixtures are promising but cluster size and time resolution are not already measured and long-time stability tests are required to check:
 - rate capability
 - effect of background radiation
 - long term performance (aging issue)

Operation stability of RPCs with CO₂-based mixtures:

- → CO₂ does not appear to be a suitable photon quencher to replace iC₄H₁₀ in C₂H₂F₄-based mixtures
- → an increase in current has been observed after two months of operation with cosmic-ray flux
- → further tests are fundamental to check the compatibility of CO₂ in gas mixtures for RPCs