

R&D results of iRPC tested at GIF++ for CMS Phase II upgrade

JaeHoon Lim (KODEL / Korea University)
On behalf of the CMS muon group

The XIV Workshop on Resistive Plate Chambers and Related Detectors

Phase II upgrade & improved RPC

High Luminosity (HL)

High η (pseudo rapidity) region Extend |η| of 2.4

HL-LHC: maximum rate of 2 kHz/cm² (safety factor of 3)

→ improved RPC (iRPC): better detector performance ensuring higher rate capability

Details on RPC upgrade project for CMS Phase II in Isabel Pedraza's presentation

iRPC developed by KODEL

iRPC Baseline design		
High Pressure Laminate Thickness	1.4 mm	
The Number of Gas Gaps	2	
Gas Gap & Electrode width	1.4 mm	
Resistivity (Ω·cm)	0.9~3 x 10 ¹⁰	
Strip pitch	0.7~1.2 cm	
Electronics Threshold	< 50 fC	

Large Size double-gap iRPC

- two cut gaps (top) and a full gap (bottom)
- 96 strips (strip pitch : 1.5~2.8 cm)

Three Front-end electronics

- · 32 channel
- voltage-sensitive mode (KODEL customized)

Gas: humidified CMS mixture

95.2 % C₂F₄ + 4.5 % iC₄H₁₀ + 0.3 % SF₆ (humidity 50%)

KODEL FEBs

Input impedance	20 Ω
Gain	200 mV/mV
LVDS output pulse width	20 ~ 100 ns
Time resolution	~100 ps (for typical 1 pC signals)
RMS electronics noises (board only)	~20 µV (3 fC)
Minimum threshold (with coaxial cable readout)	~250 µV (40 fC)

Voltage sensitive-mode FEBs manufactured with commercial preamplifiers

- developed only for fundamental R&Ds for CMS iRPCs
- Ethernet communication for adjusting thresholds

Gamma Irradiation Facility (GIF) ++

Feb/21/2018

- Locates in CERN Prevessin Site
- 100 GeV Muon beam from Super Proton Synchrotron (SPS)
 & ~13 TBq ¹³⁷Cs gamma radiation source

2017 May Test Beam

Current CMS RPC

Longevity test

More details on next talk Longevity studies for the CMS-RPC system, Andrea Gelmi

Tracking Chamber

- Two 100 cm x 70 cm 2-mm double-gap RPCs from General Tecnica (GT), Italy
 Two 10 cm x 10 cm RPCs from BARI
- Fixed HV_{eff.} at Working Point
- Additional trigger for muon tracking

iRPC from KODEL

 Measure efficiency at different gamma rates by using dedicated clustering & tracking algorithm

Consolidation Trolley

Feb/21/2018

Clustering

Clustering

- Using hit position & calibrated time information
- Cluster adjacent hits in position and in time

only Time Information : Green // Blue + Red

→ Time + Position Information : Green // Blue // Red

Gamma Cluster

Clustering Algorithm

Gamma Cluster

- At different gamma source rates
- Without muon beam

Effective High Voltage (HV_{eff})

• HV_{eff} =
$$\frac{HV_{app}}{1 - \alpha + \alpha \cdot \frac{T_0P}{T P_0}}$$

a : 0.8

 $T_0: 293.15 K$

P₀: 990 mbar

Charge & Noise Rate

Charge = Detector Current = ~8 pC at threshold 50 fC (HV_{eff.} of 6900 ~ 7400 V)
Gamma Cluster Rate

→ 3.5 times smaller than that of 2.0-mm double-gap RPCs at threshold 150 fC

Details on Longevity studies for the CMS-RPC system in Andrea Gelmi's presentation

Tracking

github.com/JaehoonLim/GIFAnalysis

Tracking

- Using cluster position & calibrated time information
- Track adjacent clusters in position and in time

Distinguish Muon Track

- Muon beam position and timing cut on reconstructed Track
- Additional Trigger: (GT1 || GT2) && (BARI-A || BARI-B)

Muon Efficiency

Muon Efficiency =

Number of Muon Track (Additional Trigger && iRPC)

Number of Muon Track (Additional Trigger)

Additional Trigger: (GT1 || GT2) && (BARI-A || BARI-B)

HV_{eff.} 6900 V : Efficiency >95 % at <500 Hz/cm²

Efficiency ~65 % at ~2 kHz/cm²

HV_{eff.} 7200 V : Efficiency >95 % at ~2 kHz/cm²

-300 V to recover efficiency

Sigmoid Functional Fit

Sigmoid functional fit

$$\varepsilon = \frac{\varepsilon_{\text{max}}}{1 + e^{-\lambda(\text{HV}_{\text{eff.}} - \text{HV}_{50})}}$$

 $HV_{\text{eff.}}$: Effective high voltage

 ϵ_{max} : Maximum efficiency of detection

 HV_{50} : $HV_{eff.}$ where the ϵ is 50% of ϵ_{max}

λ: Slope parameter at HV₅₀

Working point voltage (WP)

WP = HV₉₅ + 100V (HV₉₅: HV_{eff.} where the ε is 95% of ε _{max})

Feb/21/2018

Working Point & Effciencywp

at < 500 Hz/cm²

WP ~6850 V : Efficiencywp >95 %

at 2 kHz/cm²

WP ~7100 V : Efficiency_{WP} ~93 %

The shift of WP is also ~300 V

Summary

The large-size prototype iRPC developed by KODEL has been successfully tested at GIF++ and 100-GeV SPS H4 muon beams at CERN:

- 1. The performance of iRPC was tested by using dedicated algorithm for clustering and tracking
- 2. Mean avalanche charge of gamma background particle is ~8 pC when digitized at threshold 50 fC (300 uV)
 - → 3.5 times smaller than that of 2.0-mm double-gap RPCs at threshold 150 fC
 - → better rate capability and longevity
- 3. The prototype iRPC well satisfies the rate capability of 2 kHz/cm² that is required in the future Phase-2 LHC runs

HV_{eff.} 6900 V : Efficiency >95 % at <500 Hz/cm²

Efficiency ~65 % at ~2 kHz/cm²

HV_{eff.} 7200 V : Efficiency >95 % at ~2 kHz/cm²

We need ~300 V to recover the 95% efficiency The shift of WP at ~2 kHz/cm² is also ~300 V

Thank you!

HL-LHC

RPC upgrade project for CMS Phase II, Isabel Pedraza - page 6

LHC specs

		LHC	Earlier HL-LHC	Ultimate HL-LHC
Collider	instantaneous luminosity (cm ⁻² s ⁻¹)	10 ³⁴	5×10 ³⁴	7.5×10 ³⁴
	pileup collisions	30	150	200
	integrated luminosity (fb ⁻¹)	500	3000	4000
CMS	L1 trigger (kHz)	100	500	750
	L1 trigger latency (μs)	3.6	1	2.5

All LHC experiments were designed for the LHC specs.

New specs require detector upgrades.

February, 2018 Isabel Pedraza RPCs Upgrade Phase II

Page

iRPC

RPC upgrade project for CMS Phase II, Isabel Pedraza - page 8

Research and development done

All relevant detector improvement factors have been investigated:

- > Reduced electrode resistivity
- ➤ Different technologies : Glass⁺ and HPL electrodes⁺⁺.
- ➤ New detector geometry*
- ➤ New Front-End electronics design**

Schematic design of a Double-Gap iRPC*

⁺ see François Lagarde talk on High rate, high time precision RPC detector for LHC

** see Christophe Combaret's talk on Fast timing measurement for CMS Phase II upgrade

February, 2018 Isabel Pedraza RPCs Upgrade Phase II

Page

⁺⁺ see R&D results of iRPC tested at GIF++ for CMS Phase II upgrade

^{*}see Elena Voevodina's poster on RE3/1 and RE4/1 chambers integration in the inner region of the Forward Muon Spectrometer of the CMS experiment

iRPC detector design

RPC upgrade project for CMS Phase II, Isabel Pedraza - page 9

iRPC: detector design

Resistivity of the HPL

From 1-6 x 10 10 -> 0.9-2 x 10 10 Ohm-cm -> Enhance the rate capability by a factor 2

- ➤ **Gap thickness:** 1.4 mm instead of 2.0 mm: retards the fast growth of the pick up charge.
- ➤ Electrode thickness: 1.4 mm instead of 2.0 mm:
- 1) Recovery time reduced by factor 30%.
- 2) Efficiency of extracting the pickup charge from the avalanche charge increases by 70%.

Totally an enhancement of a factor 2 in the rate capability.

Smaller avalanche charges obtained by the lowering threshold: 150 fC -> 50 fC or less

Lowing the threshold + gap thickness can lower the avalanche charge by a factor 3 in the rate capability.

The thinner gas gaps will be more sensitivity to non uniformity.

1.4 mm is consider as a safe compromise for CMS.

(*see Jae Hoon Lim's talk on R&D results of iRPC tested at GIF++ for CMS Phase II upgrade)

February, 2018 Isabel Pedraza RPCs Upgrade Phase II

Page

RPC & iRPC

RPC upgrade project for CMS Phase II, Isabel Pedraza - page 10

RE3/1 and RE4/1 requirements at HL-LHC

	Present system	RE3/1-RE4/1
η coverage	0 - 1.9	1.8 - 2.4
Max expected rate (Safety Factor = 3 included)	600 Hz/cm ²	2 kHz/cm ²
Max integrated charge (SF = 3 included)	~ 0.8 C/cm ²	~ 1.0 C/cm ²
φ resolution	$\sim 0.3^{\circ}$	$\sim 0.2^{\circ}$
η resolution	~ 20 cm	~ 2 cm

To match CSC granularity

	RPC	iRPC
High Pressure Laminate thickness	2 mm	1.4 mm
Num. of Gas Gap	2	2
Gas Gap width	2 mm	1.4 mm
Resistivity (Ωcm)	$1 - 6 \times 10^{10}$	$0.9 - 3 \times 10^{10}$
Charge threshold	150 fC	50 fC
η segmentation	3 η partitions	2D readout

February, 2018 Isabel Pedraza RPCs Upgrade Phase II

GIF++ details

Longevity studies for the CMS-RPC system, Andrea Gelmi - page 5

Gamma Irradiation Facility (GIF++)

To certify the RPC system at HL-LHC conditions a new LONGEVITY STUDY started @ Gamma Irradiation Facility (GIF++) CERN in 2016:

- > ¹³⁷Cs source
 - $\rightarrow \sim 13 TBq$
 - → Photons Energy spectrum 0-662 KeV
 - \rightarrow Filter system (ABS source attenuation)
- Muon beam
 - \rightarrow Energy up to 100 GeV, 10⁴ muons/spill
 - \rightarrow 3-4 times per year
- > Main parameters under control
 - Environmental parameters
 - → Temperature, Humidity, Pressure
 - Gas parameters
 - \rightarrow gas composition
 - \rightarrow gas flow
 - → gas Temperature, Pressure, Humidity

GIF++ allows to test real size detectors in a similar background condition as in CMS

5

Gamma Source Rate

Gamma Source Rate at WP	Absorption Factor
→ 5124.26 Hz/cm²	3.2
3772.79 Hz/cm²	4.6
→ 3054.61 Hz/cm ²	6.8
— 2251.21 Hz/cm²	10
— 1823.38 Hz/cm ² ←	→ 15
→ 1315.26 Hz/cm²	21.5
-v 650.92 Hz/cm ²	46
→ 372.73 Hz/cm²	100
_ ■ 182.37 Hz/cm ²	215

Time Calibration

With muon sample calibrate channel by channel (strip by strip)

Cluster Size

Muon