

THE SHIP EXPERIMENT AND THE RPC TECHNOLOGY

Giovanni De Lellis

Università Federico II and INFN, Naples, Italy On behalf of the SHiP Collaboration

MOTIVATION

◆ The **Standard Model** provides an explanation for most of subatomic processes

Energy Scale

- ◆ Although very successful, it fails to explain many observed phenomena
 - Dark Matter
 - Neutrino Oscillation and masses
 - Matter/antimatter asymmetry in the Universe
- ◆ A Hidden Sector (HS) of weaklyinteracting BSM particles as an explanation

Energy Frontier:

Heavy particles → high energy collisions

Intensity Frontier:

Very weakly interacting particles

→ high intensity beam

THE SHIP PROJECT

- SHiP (Search for Hidden Particles) in a proposed fixed target experiment at CERN SPS
- Collaboration of 250 members from 49 institutes, 17 countries
- Technical Proposal arXiv:1504.04956 (2015)
- Physics case prepared by 80 theorists *Rep. Prog. Phys.* 79 (2016) arXiv:1504.04855
- Positive SPSC recommendation
- Comprehensive Design Study by 2019
 → decision about approval in 2020
- Important actor in the CERN Physics Beyond Colliders study group

SHIP DETECTOR LAYOUT

Hidden Sector/ dSHiP detector

Vacuum vessel ~50m

Multigap Resistive Plate Chambers

- possible option for dSHiP Timing Detector
- Required time resolution: <100 ps
- Transverse size: 5x10 m²

Upsteam Veto System for dSHiP detector

SHiP sensitivity to Hidden Sector

Based on 2x10²⁰ pot @400 GeV in 5 years

The Timing Detector implementation based on MRPCs.

Schematic drawing (Alberto Blanco and Paulo Fonte)

- Modules composed of two 6 gaps RPCs sensitive volumes.
- Strip (placed in the middle of two sensitive volumes) readout on both sides
- Active area of 1500x1200 mm² = 1,8 m²
- Good time resolution, $< 100 \text{ ps } \sigma$.
- Good efficiency, > 95 %
- Easy to build.
- Low multiplicity, few particles per module.

Area to be covered 10x5 m²

⇒ 40 MRPC modules with overlap

Ongoing optimization on the size

The Timing Detector implementation based on MRPCs.

Schematic drawing (Alberto Blanco and Paulo Fonte)

- Modules composed of two 6 gaps RPCs sensitive volumes.
- Strip (placed in the middle of two sensitive volumes) readout in both sides.
- Active area of 1500x1200 mm² = 1,8 m²
- Good time resolution, $< 100 \text{ ps } \sigma$.
- Good efficiency, > 95 %
- Easy to build.

Readout on both ends

The Timing Detector implementation based on MRPCs.

Schematic drawing (Alberto Blanco and Paulo Fonte)

- Modules composed of two 6 gaps RPCs sensitive volumes.
- Strip (placed in the middle of two sensitive volumes) readout in both sides.
- Active area of 1500x1200 mm² = 1,8 m²
- Good time resolution, $< 100 \text{ ps } \sigma$.
- Good efficiency, > 95 %
- Easy to build.
- Low multiplicity, few particles per module.

A sensitive volume contains the glass and HV electrodes enclosed in a plastic gas tight box with feed-throughs for gas and High Voltage.

Easy to build completely gas tight, no gas leaks

Testing MRPCs (Alberto Blanco and Paulo Fonte) All systems borrowed from the HADES-TOF

• FEE, time (σ_t ~40ps) and charge measurement in one single channel.

Strips are readout in both sides

One central FPGA with trigger management capabilities plus 4 sockets with capability to operate.

- 4 X 32 Multi-hit TDC
 - Time precision < 20 ps

And much more

Testing MRPCs
(Alberto Blanco and Paulo Fonte)

Front End Electronics

- First prototype just assembled and instrumented few days ago
- Time resolution and efficiency under evaluation.

Neutrino detector layout

In the magnetized region:

 ECC walls and target trackers, followed by tracker stations.

Outside the magnet:

Muon detector

F₄ AND F₅ STRUCTURE FUNCTIONS

First evaluation of F₄ and F₅, not accessible with other neutrinos

$$\begin{split} \frac{d^2\sigma^{\nu(\overline{\nu})}}{dxdy} &= \frac{G_F^2ME_{\nu}}{\pi(1+Q^2/M_W^2)^2} \bigg((y^2x + \frac{m_{\tau}^2y}{2E_{\nu}M})F_1 + \bigg[(1 - \frac{m_{\tau}^2}{4E_{\nu}^2}) - (1 + \frac{Mx}{2E_{\nu}}) \bigg] F_2 \\ &\pm \bigg[xy(1 - \frac{y}{2}) - \frac{m_{\tau}^2y}{4E_{\nu}M} \bigg] F_3 + \frac{m_{\tau}^2(m_{\tau}^2 + Q^2)}{4E_{\nu}^2M^2x} F_4 + \frac{m_{\tau}^2}{E_{\nu}M} F_5 \bigg), \end{split}$$

 $E(\overline{\nu_{\tau}}) < 38 \text{ GeV}$

- At LO $F_4 = 0$, $2xF_5 = F_2$
- At NLO $F_4 \sim 1\%$ at 10 GeV

TAU NEUTRINO MAGNETIC MOMENT

A massive neutrino may interact e.m.

→ magnetic moment proportional to its mass ν

$$\mu_{\nu} = \frac{3 e G_F m_{\nu}}{8 \pi^2 \sqrt{2}} \simeq (3.2 \times 10^{-19}) \left(\frac{m_{\nu}}{1 \text{ eV}}\right) \mu_B$$

Current [
$$(\nu_e)$$
 $\mu_{\nu} < 2.9 \cdot 10^{-11} \mu_B$] limits (ν_{μ}) $\mu_{\nu} < 6.9 \cdot 10^{-10} \mu_B$

$$\theta_{\nu-e}^2 < 2m_e/E_e$$

SIGNAL SELECTION

$$\begin{cases} \theta_{\nu-e} < 30 \, mrad \\ \mathbf{E}_e > 1 \, \mathrm{GeV} \end{cases}$$

IN SHiP

$$n_{evt} = rac{\mu_{
u}^2}{\mu_{B}^2} \int \Phi_{
u_{ au}} \sigma^{\mu} N_{nucl} dE$$
 = $4.3 imes 10^{15} rac{\mu_{
u}^2}{\mu_{B}^2}$

BACKGROUND PROCESSES

$$\nu_{x}(\bar{\nu}_{x}) + e^{-} \rightarrow \nu_{x}(\bar{\nu}_{x}) + e^{-} \qquad \text{NC} \\
\nu_{e} + e^{-} \rightarrow e^{-} + \nu_{e} \qquad \text{CC} \\
\nu_{e} + n \rightarrow e^{-} + p \qquad \text{QE} \\
\bar{\nu}_{e} + p \rightarrow n + e^{+} \qquad \text{QE} \\
\nu_{e}(\bar{\nu}_{e}) + N \rightarrow e^{-}(e^{+}) + X \qquad \text{DIS} \qquad 1700$$

 $\left. \frac{\sigma_{(\nu e, \overline{\nu}e)}}{dT} \right|_{\mu_{\nu}} = \frac{\pi \alpha_{em}^2 \mu_{\nu}^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_{\nu}} \right)$

No interference as it involves a spin flip of the neutrino

Assuming 5% systematics from DIS measurements

SHiP can explore a region down to

$$\mu_{\nu} = 1.3 \times 10^{-7} \mu_B$$

SHIP PHYSICS PROGRAM FOR NEUTRINO/ISHIP

- Strange quark content of the nucleon
- Light Dark Matter search

Sensitivity to Light Dark Matter

Strange quark content

MEASUREMENT OF MUON FLUX IN JULY 2018

- **SHIP target replica** , TZM 58 cm-thick + Tungsten 58 cm-thick
- **Spectrometer** to measure momentum and charge of the muons
- Muon tagger to identify muons

SPSC-EOI-016

10¹¹ pot → 100 events in the dangerous corner Validate simulation

CHARM MEASUREMENTS IN JULY 2018

- Measurement of inclusive $d^2\sigma/dEd\theta$ charm cross section in thick target
- Validation of cascade production in the target (factor ~3)
- Lead target, 12.5×10 cm² Pb plates interleaved with emulsion to identify charmed hadrons
- **Spectrometer** to measure momentum and charge of charm daughters
- Muon tagger to identify muons

5 x 10^7 pot $\rightarrow \sim 10000$ charmed hadron pairs

SPSC-EOI-017

MUON TAGGER

5 Iron walls5 RPC planes

• Iron blocks assembled in order to have a 5x5cm² hole along beam direction

MUON TAGGER

Muon identification

- Number of RPC planes crossed by muons produced in charm decays
- ▶ Normalization: muons entering the Muon Tagger

RPC planes crossed	Fraction of muons
≥ 2	0.82
≥ 3	0.77
≥ 4	0.72
≥ 5	0.69

Muon isolation

- ▶ Muon isolation in > 2 RPC planes for muon tracking and for the measurement of its slope
- ▶ Muon isolation criteria: at least 1 cm distance (strip width) both in x and y coordinates with respect to the closest hit in the same RPC plane

Requirement to build a muon track: at least two RPC planes where muon is isolated

Status of RPC production (KODEL)

Sung Park Kyong Sei Lee

Gaps at CERN

Strip panel

60666666663333

RPCs Frontend Electronics

R. De Asmundis, INFN - Napoli

- Frontend electronics: 112 cards (16 channels each), FEERIC 11 ALICE
- Cards were delivered in Naples in December
- Preparation of FE card test (including slow control) in progress in Naples

Readout boards: new firmware block scheme (Saverio Simone, Bari)

- Input signals (after masking) are stored in a circular buffer (pipeline) at 100MHz (all boards are synchronised at 100MHz).
- ➤ The 100MHz internal clock can be *synchronised* with an external signal through the Trigger Supervisor board
- ➤ Upon arrival of a trigger signal, the 64-bit hit map corresponding to a pre-determined latency + trigger number (12bit) + time stamp (12bit) are written to a FIFO.

Project schedule and next steps

- ✓ Schedule optimized to avoid interference with operation of North Area
 - → Four separate work packages (junction cavern, beam line, target complex and detector hall)
 - → Use LS3 for junction cavern and first short section of SHiP beam line
- ✓ Positive recommendation by the SPSC in January 2016 to prepare a Comprehensive Design Study 2016-2018
- ✓ CERN DG launched the "Physics Beyond Colliders" Working Group
- ✓ Outcome of the WG at the European HEP strategy in 2020
- ✓ Construction/production 2021-
 - ✓ Data taking 2026
- ✓ RPCs may play an important role (your contribution is very welcome!)