# A Geant4 simulation to estimate the RPC sensitivity to neutral radiation

Gian Luigi Alberghi

L.Bellagamba, M.Corradi, A.Mengarelli, M. Negrini INFN Bologna and Roma 1



# Introduction

### Cavern background

radiation mainly caused by particles interacting with the detector material or the beam pipe photons and neutrons dominate the population in cavern background

### **Detector hit rates**

in the muon spectrometer are due primarily to background rather than "true" muons.

**Level-1 muon** trigger is also **sensitive** to background, either from the random coincidence of individual background hits or from correlated hits

by charged particles.

# Technical Design Report for the Phase-II Upgrade of the ATLAS Muon Spectrometer

### **Neutron equivalent flux**

Table A.2: Summary table for the estimates of the 1-MeV neutron equivalent flux in units of  $10^{11}$  n/cm<sup>2</sup>. The maximum value in each region is listed. For the high- $\eta$  tagger, both the minimum and the maximum values are listed.

| Integrated $\mathscr{L}$ | BI1-6 | BIS7/8 | BM  | BO  | EIL4/5 | EE  | EM  | EO  | High-η                  |
|--------------------------|-------|--------|-----|-----|--------|-----|-----|-----|-------------------------|
|                          |       |        |     |     |        |     |     |     | $(0.1-1.8) \times 10^4$ |
| 3000 fb <sup>-1</sup>    | 3.3   | 9.9    | 2.8 | 1.3 | 9.0    | 3.6 | 3.3 | 1.0 | $(0.3-5.4) \times 10^4$ |

### **Neutron equivalent flux**



Figure A.2: Map of the simulated 1-MeV neutron equivalent flux for 1000 fb<sup>-1</sup>.

# Motivation

**Estimates** of the background rates **for ATLAS RPCs** seem to be higher than measurements

assuming constant sensitivity for low energy neutrons below 10^(-4) GeV

Goal: Derive RPC sensitivity to neutrons and photons using Geant4

**Sensitivity starting definition:** 

fraction of events causing ionization in gas

(produced by charged secondary particles)

# RPC model for Geant4



Standalone standard 2mm ATLAS double-layer RPC simulated in Geant4 Spacers included in gas gap:

1.0 cm diameter and 10.0 cm pitch in both x,y Possibility to include **electric field** in the gap

# Simulation setup

### **Event generator parameters**

Particle gun: gamma or neutron

Point of origin: just outside the RPC,

uniformly distributed in a 30cm side square (to include spacer effect)

**Direction**: normal or isotropic (angular ranges:  $\phi = [0,2\pi]$ ,  $\theta = [0,\pi/2]$ )

Physics list: QGSP\_BERT\_HP or QGSP\_BIC\_HP
Standard Geant4 lists using the data driven

high precision neutron package (NeutronHP) to transport neutrons below 20 MeV down to thermal energies



# Inactive regions in the gas gap

The sensitivity values include geometrical inefficiency due to **spacers** 

Step size in the gas gap 0.05 mm allowing identification of the point where the ionization occurs

Study the possible impact of partially active gaps:
need sufficient avalanche development in order to produce a signal dependence on the ionization position

Size of an avalanche started by a single electron at z=0 (for some RPC configuration) Riegler et al, NIM A 500 (2003) 144



# Sensitivity to gamma I

No electric field, different active size

### Active gas thickness: 2 mm

# Gap 1 Gap 2 Gap AND Gap OR Gap OR Gap 1 Gap AND Gap OR Gap 1 Gap AND Gap OR Gap

### Active gas thickness: 1 mm



Energy (GeV)

Energy (GeV)

A reduction of the active gas thickness has small impact on sensitivity in particular at low energy

# Sensitivity to gamma II

Comparison with current curves in use (single gap) : substantial agreement



# Sensitivity: neutrons I

No electric field, different active size

### Active gas thickness: 2 mm

# Figure 10<sup>-2</sup> Gap 1 Gap 2 Gap AND Gap OR OR AND AND Gap 1 Gap 1 Gap 4 Gap 6 Gap 6 Gap 6 Gap 6 Gap 7 Gap 1 Gap 2 Gap AND Gap OR IO-3 IO-3

### Active gas thickness: 1 mm



A reduction of the active gas thickness has small impact on sensitivity Not flat behavior for low energies as previously assumed

# Sensitivity to neutrons II

Comparison with current curves in use (single gap): disagreement at low energies



# Electric Field Effect

### **Neutrons**: no electric field in gas gap

### Neutrons: electric field in gas gap



### **Electric field turned on :**

increased sensitivity at low energy due to the production of protons and nuclei (ionized) in the gas gap accelerated by the electric field

For photons the electric field produces no such effects

# Ionization Clusters using Garfield ++

Geant4 provides the energy deposition

Need to relate it to the visible observables (hits)

Garfield++ allows us to determine the number of ionization clusters corresponding to Geant4 output

### **Need to redefine sensitivity**

fraction of events causing ionization in gas



Mean energy for cluster production ~100eV



# Conclusions

Photon sensitivity behavior results as expected

Neutrons require further studies but possibly understood

Geant4: Sensitivity for low energy neutrons lower than Geant 3

Simulation is essential for cavern background studies for the ATLAS Muon Spectrometer upgrade

# Thank you

# Not to show Ionization

Number of ionizations computed by Geant4 from energy deposition in the gas gap  $\Delta E$ :

- ionization energy provided by the user (20 eV in our case)
- random number extracted from a poissonian with mean ∆E/20 eV



Is this realistic? How many ionizations expected per mm for a MIP?

# Cluster number vs Released Energy

Number of events



energy deposit (ev) / cluster number

## Motivation

As current estimates of the background rates in the ATLAS RPCs seem to overestimate measurements

Sensitivity is assumed flat for low energy neutrons below 10<sup>(-4)</sup> GeV

### Goal: derive RPC sensitivity to neutrons and photons using Geant4

Single-gap RPC sensitivity from ATL-SOF-INT-2013-001





# RPC model



Standalone ATLAS double-layer RPC simulated in Geant4 Spacers included in gas gap:

1.0 cm diameter and 10.0 cm pitch in both x,y Possibility to include electric field in the gap (5.5 kV/mm)

# Garfield ++

Garfield++ provides the simulation of charged particle propagation in the gas and the avalanche development

Basic unity is not GEANT4 single ionization but Cluster of Ionization

**Test** 

Muons of 10 GeV energy (uniform signal along the gap)

GEANT4 – how much deposited energy

Garfield – cluster number in the gap

Obtain a correlation between lost energy and cluster number

# Garfield ++

Ionization energy is input for Geant4

Garfield++ provide the simulation of charged particle propagation in the gas and the avalanche development

Basic unity is not GEANT4 single ionization but Cluster of Ionization

**Test** 

Muons of 10 GeV energy (uniform signal along the gap)

GEANT4 – how much deposited energy

Garfield – cluster number in the gap

Obtain a correlation between lost energy and cluster number