

1 / 21

Feasibility study for development of a PET device based on Multigap Resistive Plate Chambers

M.Nizam 1,2 B. Satyanarayana 1 R.R. Shinde 1 G. Majumder 1

 $^{
m 1}$ Tata Institute of Fundamental Research, Mumbai

²Homi Bhabha National Institute, Mumbai

mohammad.nizam@tifr.res.in

The XIV Workshop on Resistive Plate Chambers and Related Detectors (RPC 2018)
Puerto Vallarta
February 22, 2018

Outline

- Introduction
- Fabrication and Characterization
- MRPC PET
- Timing data
- Efficiency
- \bullet Summary and Future Plan

 The Multigap RPCs (MRPCs) are gas ionization detectors with multiple sub gaps, made of highly resistive electrodes.

Schematic of the six-gap MRPC

Potentials across the sub gaps of an ideal MRPC detector

- The high voltage (HV) is applied to the outermost resistive plates only, while the interior plates are electrically floating.
- Higher voltage applied mainly due to larger overall gap

Introduction...

- A charged particle passing through the gas gaps creates simultaneous avalanches in each of the individual gas gaps.
- The fast signals in case of MRPC are produced by the flow of electrons towards the anode.
- Avalanche in any of the sub-gaps induce signals on these electrodes and the resultant signal
 is a summation from all the gas gaps.
- Copper pickup strips placed outside the cathode and anode collect the signal, with a reduced time jitter, through induction.
- \bullet We have fabricated six gap MRPCs (each sub gap being 250m) of dimension 27 cm \times 27cm \times 0.758 cm and tested in avalanche mode.
- the gas mixture being optimized to $R134a(91.2\%), C_4H_{10}(4.8\%)$ and $SF_6(4\%)$.
- Glasses of 2mm thickness coated with a conductive layer using NEROLAC paint are used for the outer electrodes.
- The surface resistances of the conductive coat are in the range $(0.5\text{-}1)M\Omega/\Box$.

Fabrication...

Spacers

Side Spacers

Glass dimesions

Pickup panels

Characterization and Time Resolution

The various characteristics of an MRPC strip as a function of the high voltage

The calibration graph for correcting of the MRPC time distribution for time- walk.

The MRPC time distribution with respect to the trigger at 17.9 kV.

MRPC 1 time distribution with respect to MRPC 2 at 17.9 kV.

Moon Moon Devi et al.(DOI:10.1140/epjc/s10052-016-4570-2)

MRPC PET

- We want to use Multigap Resistive Plate Chambers (MRPCs) for their possible application in madical imaging.
- MRPCs offer better time resolution. $\sigma_t \approx 219ps$ (achieved for cosmic muons).
- \bullet A ^{22}Na source is used to get back to back 511 KeV photons.
- Two detectors are placed on both sides of the source at unequal distances.
- the signal is picked up by X-strips and Y-strips on orthogonal planes on two sides of each detector.
- the X and Y coordinates of a hit are recorded along with the time of arrival of the photon at the detector.

MRPC PET

- The trigger is prodeuced by both X and Y strips. Three X and three Y strips of each detector are ORed separately and then X and Y signals are ANDed. The two AND signals from each detector are finally ANDed to form the trigger.
- Four scintillator detectors (44 cm X 44 cm) are used to veto cosmic muons. Two scintillators are placed above the top MRPC and two are placed below the bottom MRPC.
- We are reading only the X side timing information.
- We get lines of response by joining the X hits of MRPC1 and MRPC2.
- The timing Information tells us the exact position of the source on the line of response.

Detector setup (CAMAC DAQ)

Block Diagram of the Setup

Lines of response

- The source is placed assymitrically with respect to the two MRPCs.
- Z coordinates is given by the time of arrival on the detectors. $\triangle t = t_{MRPC1} - t_{MRPC2}$
- The position accuracy is given by $\triangle L = c \times \sigma_t/2$ $\triangle L = \text{FWHM}$ in the position accuracy, $\sigma_t = \text{rms}$ time accuracy per photon.

 $\triangle t$ of 2nd,3rd and 4th strips, Source at 3rd strip of bottom MRPC

M.Nizam (TIFR)

 $\triangle t$ of 2nd,3rd and 4th strips, Source at 3rd strip of top MRPC

 $\triangle t$ of 2nd,3rd and 4th strips, source at 3rd strip of bottom MRPC

 $\triangle t$ of 2nd,3rd and 4th strips, source at 3rd strip of top MRPC

 $\triangle t$ of 2nd,3rd and 4th strips, source at 3rd strip of bottom MRPC

 $\triangle t$ of 2nd,3rd and 4th strips, source at 3rd strip of top MRPC

Distance b/w MRPCs	Source at bottom MRPC Δt_1	Source at top MRPC Δt_2	diff= $ \Delta t_1 - \Delta t_2 /2$	Time of flight(TOF) = diff x 25 ps	Actual TOF
45 cm	Mean= -369.4 ± 2.3 Sigma= 61.57 ± 2.7	Mean=-256.8 ± 2.1 Sigma=59.56 ± 2.1	56.3 ± 2.2	1.41 ± 0.05 ns	1.5 ns
60 cm	Mean=-385.8 ± 2.8 Sigma=63.36 ± 3.6	Mean=-223.5 ± 2.4 Sigma= -53.2 ± 2.4	81.2 ± 2.6	2.03 ± 0.07 ns	2.0 ns
75 cm	Mean=-404.9 ± 3.0 Sigma=77.72 ± 4.5	Mean=-204.0 ± 2.7 Sigma=63.85 ± 3.6	100.5 ± 2.8	2.51 ± 0.07 ns	2.5 ns

TOF for different separation between MRPCs, source is at the centre of the 3rd strip for all cases.

gas gap = 0.250mm, floating glass thickness = 0.41mm

Efficiency v/s number of gaps

Summary and Future Plan

- We need to understand systematics and apply corrections to achieve better time resolution.
- Efficiency is very low, increasing the number of gaps and using converter material will increase the efficiency.
- Both X and Y timings to precisely locate the source position.
- Fabricating MRPCs with lead coating on the inner wall of the outer electrode.
- Narrow pickup strips for better position resolution.
- FPGA based DAQ system.
- Charge information along with the digital signal using Anusparsh to correct for the time walk.

