

Progress report

Comprehensive Design Report - 1 year

Richard Jacobsson

on behalf of the SHiP Collaboration

Marine glossary for the SHiP beam dump facility:

- dSHiP: Hidden Sector search through decay to SM
- vSHiP: Neutrino physics
- iSHiP: Hidden Sector search through interaction with SM matter
- τSHIP: LFV τ search

Comprehensive Design Study Planning

Developing all physics objectives of SHiP in parallel

- Detailed engineering studies going on in most subsystems
- Most effort invested in background optimization in a realistic design
- → SHiP is aiming at exploiting maximum yield and acceptance at the proton beam dump in virtually 0-background conditions, it is not optimized for a single or sub-set of simplified models
 - Models evolve quickly

Progress on global optimization

Proton target

- Baseline 12λ TZM/W target configuration confirmed (Sep. 2018) (BDF team)
 - Key input to simulation

Muon shield: Magnetized hadron stopper

- Concept developed by SHiP evolved into design
 - → Very strict constraints on integration, access, thermal and magnetic stresses, cooling circuit, radio-activation within SHiP target complex

Muon Shield

- Hadron stopper magnetization + Bayesian optimization applied to optimize muon shield
 - → Muon shield length/weight: 35m / 1500 tonnes (TP: 50m / 2900 tonnes)

→ Reoptimization of decay volume

- Studies towards engineering design with 0.3mm Grain-Oriented steel and proper field maps
 - → Prototyping and test beam in 2018

Section length - 4.5 m Mass - 600 tons

Progress on global optimization

- → Redeveloped Opera concept into long, narrow detector with single magnet
 - · Muon spectrometer in air
 - Charge determination for muonic and hadronic modes of neutrino interactions
 - Optimization of neutrino/hidden particle target with emulsion/electronic tracking

Detector developments

Background studies

- Final pre-production (target+hadron absorber) of muon and neutrino background ongoing
 - 2 x 10¹⁰ p.o.t., 25ms/p: 2 months
 - Neutrino background equivalent to 2x10²⁰ p.o.t. produced with Genie generator: few weeks
- iSHiP: Machine learning techniques to improve pattern recognition and measurement in emulsion
- dSHIP: residual muon induced background (combinatorial/DIS) requires techniques to boost statistics
 - Residual muons originate from rare stochastic processes, catastrophic energy loss
 - → Proper description in simulation is crucial

μ large angle coulomb scattering

GEANT4 used by SHiP

- Verification of description of muons from γ-conversion with GEANT expert and NA64 data
- Muon DIS studies also by switching of muon shield field
- · Neutrino background studied by relaxing cuts
- → Good control of rejection of residual beam-induced background for fully reconstructed signal modes
- → Optimization of background rejection with partially reconstructed modes under study
- → Re-simulating entire updated detector over coming months

SHiP Sensitivities

- Currently concentrating on optimization against background
 - ...and on updating and implementing benchmark models for sensitivity estimation
 - 1. HNL with recomputed BRs in full simulation
 - 2. Dark Photon in full simulation
 - Photon production in e.m. showers and in cascades not included, under study
 - RPV neutralino in full simulation
 - 4. Scalar has been implemented in full simulation but uncertainty on hadronic BR $(S \to \pi^+\pi^-, \overline{K}K)$
 - Lowest order calculation used in many works
 - Difference may be a factor 50x
 - ALP with gluonic coupling to be studied
- vWIMP and neutrino physics performance significant updates
 - → Implementation of vWIMP models under study (see next)
- → SHiP theory group very active

A. Boyarsky et a

Very Weakly Interacting Massive Particles

Two search techniques for LDM or rather "vWIMP"

Indirect: Missing mass/energy (only vector portal) ($s \propto \epsilon^2/m_{A'}$)

NA64@CERN (secondary e@100, 10¹²), LDMX@SLAC (e@10, 10¹⁶) (proposal) <u>Direct</u>: Scattering off atomic electrons and nuclei ($s \propto \epsilon^4/m_{A'}$)

BDX@JLAB (e@11, 10²²), MiniBooNE@FNAL (p@8.9, 10²⁰), SHiP@CERN (p@400, 2x10²⁰) (proposal)

- SHiP contributes with direct search in case of vector portal
 - Best sensitivity for scattering in 20 200 MeV range
- → In addition good prospective for scalar portal scattering
 - $\mathcal{L}_{mediator-SM} = \phi \sin \theta \frac{m}{v} \bar{\psi} \psi$
 - → DM-electron scattering strongly suppressed → DM-nucleon
 - → Bounds from electron experiments irrelevant

Very Weakly Interacting Massive Particles

Another example: DM with leptophobic vector mediator: DM-nucleon scattering (A. Boyarsky et al.)

- → iSHiP detector considered as generic detector for (quasi-)stable HS particles : "vWIMP"
- Model studies and detector optimization in progress

Improved background rejection for vWIMP search

Time-of-flight discrimination against neutrino

For study: Slow extraction with bunched beam, i.e. short bunch length and $I_{bunch}/I_{gap}
ightarrow \infty$

SPS 4σ bunch length/spacing of 1.5ns/25ns and 40m distance to detector target

→ Detector time resolution: 0.5ns

- → Spill scheme and cycle (BDF team)
 - → SHiP spill intensity of 4x10¹³ p/25ns in 288 bunches a la LHC should be possible
 - → Penalty factor of 3-4x less integrated proton yield due to longer cycle (3.6 s flat-bottom and longer ramp)
- → A second operational mode of SHiP as another handle on neutrino background

E.g. Mu2e@FNAL

LFV τ ightarrow 3μ

Hints to anomalies in Lepton Flavour Universality in $b \to clv_l$ and $b \to sl^+l^-$ by LHCb.

- If confirmed, hints to a NP mainly coupled to 3rd generation (G. Isidori, LHCb Implications WS 2017)
- Limits on LFV in τ decays 5 orders of magnitude weaker than in μ decays
- τ decays at Belle
 - Data: ~7x10⁸ ττ pairs
 - Almost background free due to good lepton ID
 - → BELLE II plans to collect ~5×10¹⁰ ττ pairs
- \bullet $\tau \rightarrow 3\mu$ at LHC
 - Production mainly from D_s: ~10¹¹ τ / fb⁻¹
 - Most significant background from $D_s \to \eta(\mu^+\mu^-\gamma)\mu^-\nu_\mu$
 - → LHCb
 - → ...or a dedicated interaction point...

Mode	ε (%)	N _{BG} EXP	UL (x10 ⁻⁸)	2
e-e+e-	6.0	0.21+-0.15	2.7	١
$\mu^-\mu^+\mu^-$	7.6	0.13+-0.06	2.1	
e-μ+μ-	6.1	0.10+-0.04	2.7	
μ-e*e-	9.3	0.04+-0.04	1.8	
μ-e+μ-	10.1	0.02+-0.02	1.7	
e-μ+e-	11.5	0.01+-0.01	1.5	

Few times 10⁻¹⁰ if controlling background

$\tau \rightarrow 3\mu$ at SHIP Facility: "τSHiP"

Not yet subject of

facility studies

Resumed studies of LFV $\tau \rightarrow 3\mu$ at SHIP

Opportunity already explored in SHiP Physics Proposal (Rep. Prog. Phys. 79 (2016) 124201)

- → Parallel operation with v/iSHiP and dSHiP most efficient!
- → With 5x10¹³ τ decays in vacuum from 1% of 2x10²⁰ pot on SHiP main target : U.L. on BR(τ → 3 μ) \sim 10⁻¹⁰ or better
- \rightarrow Also opportunity for $D \rightarrow \mu\mu,...$
- Challenges
 - Radiological aspects 1% beam loss
 - Entire facility to be moved downstream by 20m
 - Main backgrounds: $D_s \to \eta(\mu^+\mu^-\gamma)\mu^-\nu_\mu$ and combinatorial background from muons produced in η , ρ , ω decays
 - → Very interesting and challenging technologically
 - → Synergy with future upgrades of LHCb tracking and calorimetry

E.g. 1mm W (multiple) target system intercepting 1% — of 2x10²⁰ pot

6σ beam envelope incl. 5 mm orbit deviation and 10% beta beating → RMS 3mm

Status of muon flux/charm measurement

- Measurement of muon flux spectrum from SHiP target (SPSC-EOI-016)
 - Muon shield design and muon background
 - → Accumulate ~10¹¹ pot at H4 using the charm x-section setup in 2018
- 2. Associated charm production including hadronic cascade production in SHiP target (SPSC-EOI-017)
 - Hidden particle search normalization and v, cross-section measurements
 - Charm yield from cascade expected 2.3x larger than prompt contribution
 - **→** DsTau collaboration: Measure $10^3 D_s \rightarrow \tau X$ as input to $\sigma(\text{CC } v_\tau)$ cross-section and testing LFU for v_τ scattering (SPSC-P-354)
 - \rightarrow SHiP to measure in addition $d^2\sigma/dEd\theta$ in long target ("tipple differential") and branching ratios of different charm species
 - → SHiP optimization run 1/10 statistics in 2018 (one week collecting 5x10⁶ p)
 - → Four weeks in 2021 (collecting 5x10⁷ p)
- → Request for 4 weeks in 2018 submitted to SPSC

→ All preparations on track for July 2018

Conclusions

- → Popularity for Hidden Sector increased significantly over last 5 years
 - NA62 and NA64
 - US initiatives on vector portal and LDM
 - Belle II and LHC on scalar portal
 - → SHiP theorist group is in contact with relevant people
 - SHiP remains unique in the neutrino portal, and can also do vector and scalar portal in 0-background conditions, both through hidden particle decay and scattering search

