NA60+ Status and plans

Gianluca Usai INFN and University of Cagliari

Physics Beyond Colliders workshop CERN 21/11/2017

Precision studies of the QCD phase diagram

- Basic aspects of QCD phase diagram not yet confirmed experimentally:
 - Existence of critical point and first order phase transition
 - Chiral restoration and the hadron spectrum

NA60+: New precision measurements of dimuon production via a beam energy scan ($\sqrt{s} \sim 4.5 - 17.3$ GeV) with a dedicated experimental set-up at the CERN SPS

Why the CERN SPS?

> Various facilities can in principle investigate the high μ_B region of the QCD phase diagram

High interaction rates (>1 MHz) can be reached at the CERN SPS $(\sqrt{s} = 4.5 - 17.3 \text{ GeV})$

Forthcoming FAIR facility at GSI: complementary region $\sqrt{s} = 2-4.5$ GeV (possibly too limited for onset of deconfinement)

Collider facilities (NICA, RHIC): interaction rates lower by 2-3 orders of magnitude Also RHIC fixed target program not competitive for high precision dilepton measurements

➤ CERN SPS:

• Optimal combination of wide μ_B coverage of phase diagram and large interaction rates

Phase transitions and caloric curves

Caloric curve and phase diagram of water

Caloric curve for liquid-hadron gas phase transition in nuclear matter (M. D'Agostino et al., Nucl. Phys. A749 (2005) 55–64)

The big question: measuring a caloric curve for the hadron gas-QGP first order phase transition?

Key ideas:

Temperature from thermal dilepton production
Beam energy scan

Thermal dilepton rate and the measurement of T

Flat spectral function for M>1.5 GeV → mass spectrum after integration over momenta and emission 4-volume:

$$dN_{\mu\mu}/dM \propto M^{3/2} \times \langle \exp(-M/T) \rangle$$

T: average temperature which tracks initial temperature (dominant contribution from early stages) Robust theoretical result

Fit of mass spectrum for M>1.5 GeV \rightarrow thermometer!

NA60 measurement of T at Vs=17.3 GeV: deconfinement

[Eur. Phys. J. C 59 (2009) 607] → CERN Courier 11/2009, 31 Chiral 2010 , AIP Conf.Proc. 1322 (2010) 1

All physics background sources subtr. and integrated over $\ensuremath{p_{\text{T}}}$

Correction for acceptance and normalization to $dN_{ch}/d\eta$

effective statistics highest of all experiments, past and present (by a factor of nearly 1000)

M<1 GeV

 ρ dominates, 'melts' close to $T_{\rm c}$

M>1 GeV

~ exponential fall-off \rightarrow 'Planck-like' fit to $dN/dM \propto M^{3/2} \times \exp(-M/T)$

range 1.1-2.0 GeV: T=205±12 MeV 1.1-2.4 GeV: T=230±10 MeV

T>T_c=160-170 MeV: partons dominate

Caloric curve: theoretical guideline

- First order hadron gas-QGP phase transitions: caloric curve with dilepton thermometer
 - *T* vs energy density with beam energy scan: search for a possible flattening of *T_{slope}*

Beam Energy scan in Pb-Pb collisions:
 vs = 4.5 - 17.3 GeV CERN SPS

The NA60+ proposal at the CERN SPS

- NA60+ layout close to NA60:
 - o precision muon measurement with tracking before and after hadron absorber
 - possibility of adapting the set-up to cover the same kinematic region for various beam energies
- NA60 experiment was housed in the ECN3 underground zone
 o dismantled in 2010 to make space for NA62 installation

Scalable spectrometer for a beam energy scan √s=4.5-17 GeV

NA60+ performance for thermal radiation in central Pb+Pb : data sample size and quality (example for Vs=8.8 GeV)

- 2 · 10⁷ reconstructed signal pairs factor 100 over NA60
- Combinatorial background: μ from π,K or hadron puch-through - B/S similar as in NA60
- Fake matches: signal μ matched to wrong track in pixel telescope - much better than NA60

Mass resolution 10-15 MeV - factor ~2 better than NA60

NA60+ performance for central Pb+Pb in beam energy scan: data samples at vs=6.3-8.8-17.3 GeV

$2 \cdot 10^7$ reconstructed signal pairs at each energy

From full SPS energy towards low energy:

- Significant reduction of Drell-Yan
- Open charm becomes negligible
- Decrease of QGP

Signal mass spectrum: example for central Pb+Pb at √s=8.8 GeV

- Signal spectrum:
 - Subtractions of comb.Bkg (0.5% precision)
 - Subtraction of fake matches
- Dilepton sources M<1 GeV:</p>
 - \circ $\;$ Thermal radiation $\rho {+} \omega$
 - Thermal radiation QGP
 - Freeze-out hadron
 cocktail (η, ω, φ) (M<1
 GeV)
- Dilepton sources M>1 GeV:
 - \circ Thermal radiation 4π
 - Thermal radiation QGP
 - o Drell-Yan
 - o Open charm

The measurement of temperature from thermal spectra

- Thermal spectra from subraction of:
 - Freeze-out cocktail
 - Open charm
 - o Drell-Yan
- Thermal radiation yield meareusable up to 2.5-3
 GeV
- > Temperature:
 - Acceptance correction
 - 0 1.5<M<2.5 GeV fit to dN/dM≈M ^{3/2}exp(-M/T)
 - Systematic uncertainty: vary bkg subtraction by 0.5% before fitting

Towards a precise measurement of a caloric curve in high-energy nuclear collisions: NA60+ performance

NA60+: precision of T measurement at MeV level Sensitivity to flattening of T!

The second chapter of the story: chiral symmetry restoration

Key ideas:

- $\circ \rho$ - a_1 chiral mixing
- Thermal radiation at onset of deconfinement in 1<M<1.5

Chiral symmetry breaking and the hadron spectrum

Chiral symmetry breaking: masses of the 6 quark flavours

B. Mueller, arXiv:0404015.v2 (2004)

QCD mass (u,d) dominant in the visible part of the Universe

Hadron spectrum

Vector-Axial vector splitting (also pseudoscalar-scalar) in the physical vacuum due to spontaneous breaking of chiral symmetry

Chiral symmetry restoration and the hadron spectrum

at T_c: Chiral Restoration

Lattice QCD, $\mu_B=0$

Vector and axial vector spectral functions expected to change (left: two possible qualitative scenarios)

Chiral mixing in the vector/axial vector spectral functions (at correlator level)

What visible effects on the dilepton spectrum?

In vacuum (left) the region M=1-1.5 GeV is significantly depleted

Chiral mixing: M=1-1.5 GeV is filled by $\pi a_1 \rightarrow \mu \mu$ (trace of bumpy structure from a_1 ?) \rightarrow direct evidence of chiral symmetry restoration

The measurement of ρ - a_1 chiral mixing

Key idea: measure the thermal dilepton spectrum at the onset of deconfinement best sensitivity because of negligible QGP and increased lifetime in the mixed phase

- Performance for measurement of thermal radiation close to onset of deconfinement based on
 - Total thermal yield = thermal yield from hadronic phase at the level of central Pb-Pb at 20-40 GeV (no QGP)
 - same background level as central Pb-Pb 40 GeV

Study of spectrum up to M ≈ 2 GeV possible

sensitivity to ρ - a_1 chiral mixing

Summary and outlook

Feasibility studies for caloric curve and ρ - a_1 mixing well advanced

- Further studies under way for:
 - \circ J/ ψ , ψ (2S)
 - o open charm
 - $\circ \chi_c$
- Further studies for apparatus layout:
 - Detector technologies (e.g. monolithic pixels, gems, magnet)
 - Optimization for possible space constraints
- Timeline: Still being discussed (no explicit involvement of funding agencies up to now)
- Formation of an international collaboration and expression of interest (presently interest from physicists from several institutions: Cagliari (INFN), Padova (INFN), Torino (INFN), Munich (TUM), Stony Brook University, Rice University, Lyon (IPNL))

backup

Towards chiral restoration: ρ mass shift vs. broadening

- NA60 In-In 160 AGeV data before acceptance correction
- Comparison to theoretical models:
 - Brown/Rho dropping mass scenario
 - Rapp/Wambach only broadening

Strong broadening of ρ observed (no mass shift) \rightarrow 'hadrons melt' (indirect) evidence of chiral symmetry restoration

On chiral restoration and p melting: P.M.Hohler and R. Rapp, PLB 731 (2014) 103

Signal mass spectra vs Vs

From full SPS energy towards low energy:

- Significant reduction of Drell-Yan
- Open charm becomes negligible
- Decrease of QGP

Theoretical guidance for the QCD phase diagram

 μ_B related to density of (baryons - anti-baryons)

Hot QCD coll., arXiv:1407.6387 (2014)

deconfinement transition

Borsanyi et al., arXiv:1011.4030.v1 (2010)

chiral symmetry restoration

Small μ_B (Lattice QCD)

crossover transition $\epsilon_c \sim 1 \text{ GeV/fm}^3$, $T_c \sim 160 \text{ MeV}$

Large μ_{B} , moderate T (field th.)

QCD critical point, 1st order transition

Requirements (beam, space)

Size of the experiment

- \rightarrow further studies needed to fit North Area Halls as ECN3
- To get the necessary integrated luminosity, beam intensities of ~10⁷ ions/s are mandatory (assuming ~5 s bursts)
 - \rightarrow does this restrict the choice to ECN3?
 - \rightarrow is it possible to share it with other experiments?
- > The physics program of NA60+ includes, in terms of beam:
 - → few week periods with ion beams from ~20 GeV to top SPS, performing a detailed energy scan (example: 20, 30, 40, 80, 120, 160 GeV/nucleon)
 - → corresponding periods of proton beams (reference), scan could be coarser, beam intensities ~5x10⁸ p/s

Experimental objectives for BES at the CERN SPS

- Energy scan in Pb-Pb collisions at several energies in the lab energy range ~20-160 GeV/nucleon (example 20-30-40-80-120-160 GeV/nucleon)
- Objectives for reconstructed dilepton pairs at each energy:
 - $\,\circ\,$ isolation of dilepton spectrum from hadronic phase $\,$ up to M^2 GeV
 - $\circ~$ measurements of T and $\rm T_{eff}$ vs M with an accuracy at the MeV level
 - > 5 · 10⁷ reconstructed pairs from thermal radiation per energy point (statistics increase by a factor ≈100 over NA60 at each energy)
 - $\circ~$ 2-3 \cdot 10⁴ reconstructed J/ $\psi~$ mesons per energy point
- Data taking goal: run at each energy in a ~15 days beam-time period
 Interaction rate ~ 0.5-1 MHz
 beam-intensity: ~2-3 · 10⁷/s (assuming 5 s burst, 3 burst/minute)
- pA data at some energy point also needed

Basic physics program accomplished in ≈5 years of data-taking

Possible detector strategy

Vertex spectrometer

- Monolithic active pixel sensors:
 - \rightarrow Low material budget (5-10 times better than hybrid pixels)
 - \rightarrow Possibly lacking in terms of read-out speed (~1MHz needed)
 - \rightarrow Fluences~ 10¹⁴n_{eq}/cm²

Hadron absorber

 \rightarrow BeO-graphite sections, variable thickness

Muon spectrometer

- \rightarrow GEM with ~200 μ m space resolution for tracking chambers
- \rightarrow Toroid magnet (BL=0.75 Tm at r = 1m)

Trigger

- \rightarrow Muon triggering based on two stations positioned after a C wall
- \rightarrow Possibility of using (also) vertex spectrometer information

Charmonium and open charm

- Full SPS energy (160 GeV): J/ψ anomalous suppression relevant for PbPb collisions
- Energy scan: possibility of investigating the onset of the suppression and to relate it with the onset of deconfinement
- No existing measurements for energies below top SPS energy
- > Other possible measurements: $\psi(2S)$, χ_c

At chiral restoration:

- \circ production threshold of DD pair may be reduced
 - →enhancement of production by a large factor

At onset of deconfinement:

- $\circ~$ J/ ψ melting in the QGP and enhancement of DD in the chirally-symmetric medium
 - \rightarrow possible drop of ratio (J/ ψ) / (D+ \overline{D})

Performance studies for J/ ψ and open charm reconstruction

 J/ψ production feasible from top SPS energy down to ~40-60 GeV, depending on the available beam time

Sample of ~2-3 \cdot 10⁴ J/ ψ can be collected with beam intensities similar to those already available in the NA50/NA60 experiments, running the experiment for 2 weeks at each energy

Reconstruction of open-charm:

- Semi-leptonic decay $D \rightarrow \mu + X$ (BR~10%)
- tag of displaced muon tracks wrt primary interaction point
- \bigcirc Hadronic decays D→Kπ (BR~4%) and D→Kππ (BR~9%)
- standalone track reconstruction in the silicon vertex tracker