Precision Muon Experiments (and the Standard Model).

Tim Gorringe, Dept. of Physics and Astronomy, Univ. of Kentucky

Particle Physics in Indiana, Kentucky, Illinois and Ohio, Sept. 16, 2017, Lexington, Kentucky. a quick tour of particle physics thru precision measurements of time distributions of μ -decay electrons with 10¹¹-10¹² statistics, petabyte-scale datasets.

Precision measurements of electron time distributions from muon decay.

Featuring standard model, new physics, and emergent phenomena.

MuSun

solar thermonuclear hydrogen burning

MuLan - lifetime of the positive muon τ_{u+}

parameters of EW interaction are determined by precision measurement of α , G_F, M₇

 $\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192 \pi^2} (1 + \Delta q)$

Δq contains QED, QCD radiative corrections

~ **0.1 ppm** uncertainty in $T_{\mu}-G_{F}$ relationship from Δq , m_{μ}

MuLan - accumulating μ^+ 's and measuring e⁺'s

MuLan detector

MuLan - accumulating μ^+ 's and measuring e⁺'s

MuLan Result

 T_{μ} is "anchor" in tests of universality using $\tau \rightarrow evv$, $\tau \rightarrow \mu vv$ and studies of muon capture by lifetime techniques.

mi constant, $G_F = 1.1663788(7) \times 10^{-5}$ V⁻² [0.6 ppm], together with Higgs mass termine the Higgs vacuum expectation ue, v, and self interaction parameter, λ .

MuCap - lifetime of muon hydrogen atom, $\tau_{\mu\nu}$

- pseudoscalar coupling $g_{\rm p}$ is fundamental quantity in description of proton's weak interaction
- relation between g_p , g_a is golden test of QCD symmetries and symmetry breaking origin of nucleon mass.

MuCap - lifetime of muon hydrogen atom, $\tau_{\mu\rho}$

MuCap - µ⁻p chemistry

MuCap used ultra-pure, 10 bar H₂ gas to prepare singlet atoms.

MuCap Result, $\Lambda_s = 715.6 \pm 5.4$ (stat) ± 5.1 (syst) s⁻¹

•verifies understanding of QCD symmetries and origins of nucleon masses

Muon g-2 – the muon's anomalous magnetic moment, a_{i} .

Penning trap for 3.094 GeV/c, polarized muons

muon "fills" are injected and stored in uniform vertical magnetic field with electrostatic quadrupoles for vertical confinement.

we measure two frequencies – the muon anomalous precession freq. and proton Lamor precession freq.

Penning trap for 3.094 GeV/c, polarized muons.

Self-analyzing muons, $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu}$

- relativistic boost from μ to lab frame yields higher energy positrons when emitted along $\mu\text{-}orbit$
- relativistic boost from μ to lab frame yields lower energy positrons when emitted opposite $\ \mu\text{-orbit}$

ω_{p} , proton NMR and measuring <u>B</u>

ω_{n} , proton NMR and measuring <u>B</u>

- 8 GeV protons to recycler ring for bunching
- extract bunches and strike the πproduction target
- decay of π's to polarized µ's in decay line
- injection into delivery ring for μ, π, p separation
- muons extracted to g-2 storage ring

•inflector null's storage ring 1.5T field in beamline entrance via superconducting double cosine theta coil.

•kicker displaces the injected beam by ~0.8 mrad to place on storage ring's ideal orbit. measure beam focus at inflector

Scintillating fiber beam monitor – June 2017 commissioning run

IBMS 2 X Profile (0 radially out)

measure stored beam in ring

In-vacuum scintillating fiber arrays – June 2017 commissioning run

First fill – May 23, 2017 commissioning run

first wiggle plot – June 2017 commissioning run

Schedule

