Higgs Decay to Light Jets

Khalida Hendricks

The Ohio State University

September 16, 2017

Linda M. Carpenter, Tao Han, Khalida Hendricks, Zhuoni Qian, Ning Zhou Phys.Rev. D95 no.5, 053003 (2017) arXiv:1611.05463

- Currently, the best understood Higgs detection channels are mostly EW
- $ht\bar{t}$ can be measured via loop (and other) processes
- *b*-tagging may allow us to see $h \to b\bar{b}$ up to 5σ at $14\,TeV$ and \sim hundred fb^{-1}
- c-tagging could set bounds of the $hc\bar{c}$ coupling at $\sim 6.5 imes SM$
- We looked for a way to study Higgs decay to a pair of light, untagged jets $(h \rightarrow jj)$.

Higgs Production at the LHC

- $\blacksquare \ pp$ collider \rightarrow collisions between quarks and gluons
- Primary Higgs production mode is gluon-gluon fusion (\approx 86%)
- Second largest production channel from Vector Boson Fusion ($\approx 7\%$)

Higgs Decays

process	BR	process	BR
$H ightarrow ar{b}b$	58.2%	$H \rightarrow ZZ^*$	2.7%
$H \rightarrow WW^*$	21.6%	$H ightarrow \gamma \gamma^{\diamond}$	0.23%
$H ightarrow gg^{\diamondsuit}$	8.18%	$H \rightarrow Z\gamma$	0.15%
$H \rightarrow \tau^+ \tau^-$	6.4%	$H ightarrow ar{q} q$	<0.03%
$H ightarrow \overline{c}c$	2.89%		

Higgs branching ratios at $m_H \approx 125 \, GeV$. (⁽⁾) indicates a loop process. Here $q = \{u, d, s\}$.

$h ightarrow \mathsf{light}$ jets

Strategy: Use associated production with vector boson.

- Production:
 - $pp \rightarrow hV$ (LO)
 - $gg \rightarrow hZ$ (NLO)
- Decays: $h \rightarrow gg$ plus • $Z \rightarrow \ell\ell \ (\ell = \{e^{\pm}, \mu^{\pm}\})$ • $W \rightarrow \ell\nu$ • $Z \rightarrow \nu\nu$
 - \rightarrow The leptonic W/Z decay serves as effective trigger

MadGraph to simulate events:

- Production/decay of tree level diagrams was done in-line
- Production/decay of loop diagrams was done using @NLO+MadSpin
- LHE (parton level) events were showered via Pythia
- Used the Delphes detector simulator (generic LHC)

Dominant backgrounds:

- Primary background for all channels was $pp \rightarrow Vjj$
- $t\bar{t} \rightarrow l\nu jjbb$ was also significant in the one-lepton ($W \rightarrow \ell \nu$) channel.

Analysis

Analysis:

- Selected generator-level cuts used to minimize divergences and increase event generation statistics.
- Used Root for analysis with in-house code to check/confirm Root results

Jet cuts:

- At least two jets, $p_{T(j)} > 30 \, GeV$, $|\eta_j| < 2.5$
- Higgs mass reconstruction 95 < m_{ii} < 150 GeV</p>

$$R_{jj} - p_T$$
 distribution

Analysis

VB cuts

- $\blacksquare \ Z \to \ell \ell$
 - **T**wo hard leptons, same flavor, opposite sign, $p_{T(\ell)} > 30 \, GeV$, $|\eta_\ell| < 2.5$
 - $p_{T(V)} > 200 GeV$
 - Z mass reconstruction $70 < m_{\ell\ell} < 110 GeV$

•
$$W \to \ell \nu$$

- One hard lepton $p_{T(\ell)} > 30 GeV$, $|\eta_\ell| < 2.5$
- $p_{T(V)} > 200 \, GeV$
- *∉*_T > 30*GeV*

$$Z \rightarrow \nu \nu$$

- Elepton veto: $p_{T(\ell)} > 30 \, GeV$, $|\eta_\ell| < 2.5$
- ∉_T > 200*GeV*

$$\mathcal{S} = rac{\sigma_{ extsf{sig}} imes \mathscr{L}}{\sqrt{\sigma_{ extsf{bkgd}}}}$$

σ (fb)	$\ell^+\ell^- + jj$	$\ell^{\pm} + \not \!\!\! E_T + jj$	∉ _T + jj	combined
Vh signal	$7.0 imes10^{-2}$	$4.1 imes10^{-1}$	$3.6 imes10^{-1}$	
<i>Vjj</i> background	$2.4 imes10^2$	$2.5 imes10^3$	$1.6 imes10^3$	
\mathcal{S} @ $\mathcal{L} = 3000 fb^-1$	0.25	0.61	0.49	0.82

Table : Signal significance achieved from each channel and combined results.

$$\mathcal{S}_{j'} = rac{\mathcal{S}_q}{74\%} = 1.1\sigma$$

	$h ightarrow b \overline{b}$	$h ightarrow c \overline{c}$	h ightarrow jj
bb-tag	99.6%	0.4%	0%
cc-tag	90.4%	9.6%	0%
un-tag <i>j'</i>	16%	10%	74%

Table : Fraction of SM decay channels

NOTE: $S_b = 11$, $S_c = 1.35$

Signal strength:

$$\mu_i = \frac{BR(h \to ii)}{BR^{SM}(h \to ii)}$$

Contour constraint on correlation between $\{\mu_j, \mu_c, \mu_b\}$:

$$\mathcal{S}^2 > \sum_{a} rac{(\sum_i e_{ai} \ \mu_i - 1)^2}{(1/\mathcal{S}_a)^2}$$

95%CL upper bounds @ 3000*fb*⁻¹:

- $BR(h \rightarrow jj) \leq 4 \times BR^{SM}(h \rightarrow gg)$
- $BR(h \rightarrow c\bar{c}) \leq 15 \times BR^{SM}(h \rightarrow c\bar{c})$

$$\mu_c - \mu_j$$
 with $\mu_b = 1$ fixed

Extrapolated upper bounds at 95% CL on the light-quark Yukawa couplings:

$\mathcal{L}(\mathrm{fb}^{-1})$	$\overline{\kappa}_{\mathrm{u}}(\kappa_{\mathrm{u}})$	$\overline{\kappa}_{\mathrm{d}}$ (κ_{d})	$\overline{\kappa}_{\mathrm{s}}(\kappa_{\mathrm{s}})$
300 (un-tagged j′j′)	1.3	1.3	1.3
3000 (un-tagged j′j′)	0.6	0.6	0.6
Current Global Fits	0.98	0.97	0.70
h kinematics - 300	0.36	0.41	
h kinematics - 3000			1

$$\overline{\kappa}_q = \frac{y_q}{y_b^{SM}}$$
 for $q = \{u, d, s\}$

Summary:

- \blacksquare Achieve a combined significance of $\mathcal{S}=1.1\sigma$ for the untagged light jet channel
- 95%CL upper bounds @ 3000fb⁻¹:
 - $BR(h \rightarrow jj) \leq 4 \times BR^{SM}(h \rightarrow gg)$
 - $\blacksquare BR(h \rightarrow c\bar{c}) \leq 15 \times BR^{SM}(h \rightarrow c\bar{c})$
- indirect bounds on light quark Yukawa couplings

Further work:

- Include other production channels (VBF & $t\bar{t}h$)
- Include single-tagged categories

Higgs Discovery diagrams

Discovery channels for Higgs decay: (a) $h \rightarrow 4\ell$; (b-d) $h \rightarrow \gamma\gamma$ via quark and vector boson loops

$h \rightarrow \text{light jets}$

Higgs p_T distribution for signal processes $qq \rightarrow hZ$ and $gg \rightarrow hZ$ at the 14 TeV LHC

Generator Level Cuts:

- $p_{T(j)} > 20 GeV$ (divergences)
- $|\eta_j| < 3$ (divergences)
- *R_{jj}* > 0.4 (divergences)
- $p_{T(V)} > 150 GeV$ (statistics)

Cutflow for $hZ \to jj\ell\ell$

cut eff (%)	$qar{q} o Zh$	gg ightarrow Zh	$q\bar{q} ightarrow Zjj$
σ (fb)	$3.9 imes10^{-1}$	$2.0 imes10^{-1}$	1.2×10 ⁴
2 leptons	59%	52%	40%
\geq 2 jets	51%	49%	32%
$70 < m_{II} < 110$	50%	49%	31%
$p_{T(\ell\ell)}>200~{ m GeV}$	26%	23%	16%
$R_{j_1 j_2} < 1.4$	21%	12%	5.3%
$95 < m_h < 150 { m ~GeV}$	14%	7.6%	1.9%
final (fb)	$5.4 imes10^{-2}$	$1.5 imes10^{-2}$	2.4×10 ²
efficiency	14%	7.6%	1.9%

Cutflow for $hW \to jj\ell \not \!\!\! E_T$

cut eff (%)	$qar{q} o Wh$	$qar{q} o W$ jj	$t\overline{t} ightarrow \ell u jjb\overline{b}$
σ (fb)	2.3	1.0×10^{5}	1.5×10^{4}
$\not\!$	94%	87%	93%
1 lepton	72%	52%	62%
$p_{T(\ell u)} > 200 \text{ GeV}$	39%	24%	26%
\geq 2 jets	35%	20%	22%
$R_{j_1 j_2} < 1.4$	27%	6.8%	11%
$95 < m_h < 150 { m ~GeV}$	18%	2.5%	2.5%
final (fb)	$4.1 imes10^{-1}$	$2.5 imes10^3$	$3.7 imes10^2$
efficiency	18%	2.5%	2.5%

Cutflow for $hZ \rightarrow jj + \not \!\!\! E_T$

cut eff (%)	q ar q o Z h	gg ightarrow Zh	q ar q o Z j j
σ (fb)	1.2	$6.0 imes10^{-1}$	3.6×10 ⁴
$\not\!\!\!E_T > 200 { m GeV}$	49%	44%	42%
\geq 2 jets	45%	43%	35%
$R_{j_1 j_2} < 1.4$	36%	25%	12%
$95 < m_h < 150 { m GeV}$	23%	15%	4.5%
final (fb)	$2.7 imes10^{-1}$	$8.9 imes10^{-2}$	$1.6 imes10^3$
efficiency	23%	15%	4.5%

$$S^{2} > \sum_{a} \chi_{a}^{2} = \sum \frac{(x_{a} - \overline{x}_{a})^{2}}{\sigma_{a}^{2}}$$
$$= \sum_{a} \frac{(\sum_{i} \epsilon_{ai}^{2} BR_{i} N_{sig}^{prod} - \sum_{i} \epsilon_{ai}^{2} BR_{i}^{SM} N_{sig}^{prod})^{2}}{(\sqrt{N_{bkg}})^{2}}$$
$$= \sum_{a} \frac{(\sum_{i} e_{ai} \mu_{i} - 1)^{2}}{(1/S_{a})^{2}}$$