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- Example 1: Muon Capture and neutrinos

- Example 2: universality in WIMP-nucleon scattering

- Example 3: Proton radius puzzle
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Focus on 3 numbers
  

��NrA rE

- rA: determines signal cross section for LBNE

- σχN: universal cross section for next-gen. DD

- rE: 5σ shift in Rydberg (or something even more interesting)



- neutrinos: must confront large uncertainty in signal process of νe 
appearance at long baseline neutrino experiment 

globally describes the transition between these processes or
how they should be combined. Moreover, the full extent to
which nuclear effects impact this region is a topic that has
only recently been appreciated. Therefore, in this section, we
focus on what is currently known, both experimentally and
theoretically, about each of the exclusive final-state processes
that participate in this region.

To start, Fig. 9 summarizes the existing measurements of
CC neutrino and antineutrino cross sections across this inter-
mediate energy range

!"N ! "!X; (54)

!!"N ! "þX: (55)

These results have been accumulated over many decades
using a variety of neutrino targets and detector technologies.
We immediately notice three things from this figure. First, the
total cross sections approaches a linear dependence on neu-
trino energy. This scaling behavior is a prediction of the quark
parton model (Feynman, 1969), a topic we return to later, and
is expected if pointlike scattering off quarks dominates the
scattering mechanism, for example, in the case of deep
inelastic scattering. Such assumptions break down, of course,
at lower neutrino energies (i.e., lower momentum transfers).
Second, the neutrino cross sections at the lower energy end of
this region are not typically as well measured as their high-
energy counterparts. This is generally due to the lack of high
statistics data historically available in this energy range and
the challenges that arise when trying to describe all of the
various underlying physical processes that can participate in
this region. Third, antineutrino cross sections are typically
less well measured than their neutrino counterparts. This is
generally due to lower statistics and larger background con-
tamination present in that case.

Most of our knowledge of neutrino cross sections in
this intermediate energy range comes from early experiments
that collected relatively small data samples (tens-to-a-few-
thousand events). These measurements were conducted in

the 1970s and 1980s using either bubble chamber or spark
chamber detectors and represent a large fraction of the data
presented in the summary plots we show. Over the years,
interest in this energy region waned as efforts migrated to
higher energies to yield larger event samples and the focus
centered on measurement of electroweak parameters (sin2#W)
and structure functions in the deep inelastic scattering region.
With the discovery of neutrino oscillations and the advent of
higher intensity neutrino beams, however, this situation has
been rapidly changing. The processes discussed here are im-
portant because they form some of the dominant signal and
background channels for experiments searching for neutrino
oscillations. This is especially true for experiments that use
atmospheric or accelerator-based sources of neutrinos. With a
view to better understanding these neutrino cross sections,
new experiments such as Argon Neutrino Test (ArgoNeuT),
KEK to Kamioka (K2K), Mini Booster Neutrino Experiment
(MiniBooNE),Main INjector ExpeRiment: nu-A (MINER!A),
Main Injector Neutrino Oscillation Search (MINOS), Neutrino
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FIG. 8. Predicted processes to the total CC inclusive scattering
cross section at intermediate energies. The underlying quasielastic,
resonance, and deep inelastic scattering contributions can produce a
variety of possible final states including the emission of nucleons,
single pions, multipions, kaons, as well as other mesons (not
shown). Combined, the inclusive cross section exhibits a linear
dependence on neutrino energy as the neutrino energy increases.
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FIG. 9. Total neutrino and antineutrino per nucleon CC cross
sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figs. 28, 11,
and 12, with the inclusion of additional lower energy CC inclusive
data from m (Baker et al., 1982), # (Baranov et al., 1979), j
(Ciampolillo et al., 1979), and ? (Nakajima et al., 2011). Also
shown are the various contributing processes that will be inves-
tigated in the remaining sections of this review. These contributions
include quasielastic scattering (dashed), resonance production (dot-
dashed), and deep inelastic scattering (dotted). Example predictions
for each are provided by the NUANCE generator (Casper, 2002).
Note that the quasielastic scattering data and predictions have been
averaged over neutron and proton targets and hence have been
divided by a factor of 2 for the purposes of this plot.
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q2 = 0 is essentially the only relevant shape parameter for current data at Q2 ! 1GeV2, and
introduce the formalism to systematically account for the impact of other poorly constrained
shape parameters on the determination of mA. A related study of the vector form factors of
the nucleon was presented in [9].

The paper is structured as follows. In Section 2 we discuss the application of analyticity and
dispersion relations to the axial-vector form factor of the nucleon. Section 3 presents results
for the extraction of the axial-vector form factor slope from MiniBooNE data. We illustrate
constraints imposed by our analysis on nuclear models, by determining the binding energy
parameter in the Relativistic Fermi Gas (RFG) model of Smith and Moniz [16]. Section 4 gives
an illustrative analysis of constraints on the axial mass parameter from pion electroproduction
data. Section 5 discusses the implications of our results. For completeness, Appendix A collects
formulas for the RFG nuclear model.

2 Analyticity constraints

This section provides form factor definitions and details of the model-independent parameter-
ization based on analyticity.

2.1 Form factor definitions

The nucleon matrix element of the Standard Model weak charged current is

⟨p(p′)|J+µ
W |n(p)⟩ ∝ ū(p)(p′)

{

γµF1(q
2) +

i

2mN
σµνqνF2(q

2)

+ γµγ5FA(q
2) +

1

mN
qµγ5FP (q

2)

}

u(n)(p) , (3)

where qµ = p′µ − pµ, and we have enforced time-reversal invariance and neglected isospin-
violating effects as discussed in Appendix A. The vector form factors F1(q2) and F2(q2) can be
related via isospin symmetry to the electromagnetic form factors measured in electron-nucleon
scattering. At low energy, the form factors are normalized as F1(0) = 1, F2(0) = µp − µn − 1.
For definiteness we take a common nucleon mass, mN ≡ (mp + mn)/2. Parameter values
used in the numerical analysis are listed in Table 2. In applications to quasielastic electron- or
muon-neutrino scattering, the impact of FP is suppressed by powers of the small lepton-nucleon
mass ratio. For our purposes, the pion pole approximation is sufficient,2

FP (q
2) ≈ 2m2

N

m2
π − q2

FA(q
2) . (4)

The axial-vector form factor is normalized at q2 = 0 by neutron beta decay (see Table 2).
Our main focus is on determining the q2 dependence of FA(q2) in the physical region of

2 Here and throughout, mπ = 140MeV denotes the pion mass.
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FIG. 7. Final form factor from Eqs. (31), (32) and (33).
Also shown is the dipole axial form factor with axial mass
mA = 1.014(14) GeV [54].

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [54]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].
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- dark matter: 

WIMP paradigm pushed to larger masses (≫mW)
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The Road to Zeptobarn Dark Matter and Beyond  Sunil Golwala

• A WIMP ! is like a massive neutrino: produced when T >> m! via pair annihilation/

creation.  Reaction maintains thermal equilibrium.

• If interaction rates high enough, comoving density drops as exp(!m! / T) as T drops 
below m! : annihilation continues, production becomes suppressed.

• But, weakly interacting ! will 

“freeze out” before total annihilation if

i.e., if annihilation too slow to keep
up with Hubble expansion

• Leaves a relic abundance:

for m! = O(100 GeV)

! if m! and "ann determined by

new weak-scale physics, then #! is O(1)
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- precision spectroscopy: 

Most mundane resolution of the proton radius puzzle: 

- change fundamental Rydberg constant by ~5σ
- revise inferences from several decades of both electron 
scattering and hydrogen spectroscopy 

Rydberg

n2
+

r2E
n3~

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ

0
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Letusbrieflyreview
therenormalizationforthescalartriplet.The1PItwopointfunctionsfor
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And the neutrino problem is harder (flux, nuclear effects, statistics).
So we need to get this right. 



7

1. muon capture and neutrino cross sections



86 4 Neutrino Mixing, Mass Hierarchy, and CP Violation

baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible

The Long-Baseline Neutrino Experiment

LB
N

E,
 1

30
7.

73
35

8

Every neutrino-nucleus cross section prediction relies on nucleon-

Recent neutrino discoveries (neutrino mixing) have set the 
stage for yet further discoveries (leptonic CP violation, …)
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pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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Start with the basic process

n p

μ-νμ

poorly known axial-vector form factor

�(⌫n ! µp) = | · · ·FA(q
2) · · · |2

A common ansatz for FA has been employed for the last ~40 years: 

5

C. Dipole fits

Our results for the axial form factor will di↵er from
the analyses in the original publications. These di↵er-
ences arise from a number of sources: di↵erent numerical
inputs in Table I; di↵erences in the statistical analysis
(such as fits to the binned Q2 distribution using the flux
representation (5) in place of unbinned likelihood fits);
and di↵erences in axial form factor shape assumptions.
In order to understand these di↵erences, we begin by re-
stricting attention to the dipole ansatz,

F dipole

A (q2) = FA(0)

✓
1� q2

m2

A

◆
�2

, (12)

and compare to fits in the orginal publications.8

Table II gives results for fits to the dipole ansatz
(12) for the axial form factor. The table shows “flux-
independent” results from the original experiments,
which performed unbinned likelihood fits to event-level
data. Our results represent a likelihood fit to the binned
Q2 distribution of events obtained with a neutrino flux
given by smoothing the binned reconstructed neutrino
energy distribution (divided by theoretical cross section),
as described in Sec. II B. Fits to the binned log-likelihood
function are found by minimizing the function

�2log (L (µ(FA))) = 2
X

i


µi � ni + nilog

✓
ni

µi

◆�
,

(13)
where ni is the number of events in each bin and µi is
the theory prediction (10) for the bin. Errors correspond
to changes of 1.0 in the -2LL function.9

Because of the di↵erence in fit techniques, we do not
expect precise agreement even when the original choices
of constants in Table I are used. However, discrepancies
in central values for each case are below the 1� level, and
the size of the errors are approximately equal. Having
reproduced the original analyses to the extent possible,
and having updated constants as in Table I, we turn to
an investigation of axial form factor shape assumptions.

III. z EXPANSION ANALYSIS

Having fixed the datasets and analysis procedure, let
us investigate the implications of form factor shape as-
sumptions.

8 A similar exercise was performed in Refs. [3, 4, 29].
9 Errors determined by a covariance matrix analysis are in good
agreement; an explicit comparison of the two error determina-
tions is given in Sec. VI.

TABLE III. Maximum value of |z| for di↵erent Q2 ranges and
choices of t

0

.

Q2

max

[GeV2] t
0

|z|
max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal

0

(3.0GeV2) = �0.57GeV2 0.35

A. z expansion formalism

Let us recall that the axial form factor obeys the dis-
persion relation,

FA(q
2) =

1

⇡

Z
1

t
cut

dt0
ImFA(t0 + i0)

t0 � q2
, (14)

where t
cut

= 9m2

⇡ represents the leading three-pion
threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [62],

z(q2, t
cut

, t
0

) =

p
t
cut

� q2 �
p
t
cut

� t
0p

t
cut

� q2 +
p
t
cut

� t
0

, (15)

where t
0

, with �1 < t
0

< t
cut

, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

k
maxX

k=0

akz(q
2)k , (16)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.
In any given experiment, the finite range of Q2 implies

a maximal range for |z| that is less than unity. We denote
by toptimal

0

(Q2

max

) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max

 q2  0. Explicitly,

toptimal

0

(Q2) = t
cut

(1�
p

1 +Q2

max

/t
cut

) . (17)

Table III displays |z|
max

for several choices of Q2

max

and
t
0

.
The choice of t

0

can be optimized for various applica-
tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2. and therefore take as default
choice,

t̄
0

= toptimal

0

(1GeV2) ⇡ �0.28GeV2 , (18)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III

rA = 0.674(9) fm

6

higher order in k,

|ak/a0|  25/k , k > 5. (20)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit.

We investigate a range of k
max

, other choices of t
0

,
and alternatives to Eqs. (19) and (20), which are briefly
reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (15). We enforce the sum rule constraints (18)
and use the default bounds on the coe�cients ak in
Eqs. (19),(20). The results are summarized in Table IV
and displayed in Figs. 1 and 2. For the Na = 4 fits in
Table IV,

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.23(10), 0.5(1.0), -5.3(2.5), 2.1(2.7)] (BNL)

[2.24(10), 0.1(0.9), -4.7(2.3), 2.6(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(21)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

For Na = 4, the shape parameter (24) is determined by
the di↵erent datasets as displayed in Eq. (21). The fits
summarized in Table IV also include variations with dif-
ferent number of free parameters. To summarize briefly,
the leading coe�cient almost does not change as more
parameters are added. This is summarized [TODO clean
the bara notation, which is introduced later.]

[a
1

(BNL), a
1

(ANL), a
1

(FNAL)]

=

8
><

>:

[2.22(10), 2.22(10), 2.02(14) ] , Na = 3

[2.23(10), 2.24(10), 2.02(14) ] , Na = 4

[2.21(10), 2.24(10), 2.01(14) ] , Na = 5

. (22)

As discussed after Eq. (17), z2, z3, z4, etc., terms in the z
expansion become increasingly irrelevant, corresponding
to |z|

max

⌧ 1.0 in Table III. This is borne out by the
data, which determines a form factor with coe�cients of
order 1.0 that mostly don’t push the Gaussian bounds,
and the leading coe�cient is approximately the same re-
gardless of how many orders in z are used.

In addition to the full form factor, the axial “charge”
radius can be defined via the form factor slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (23)
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

This quantity is sensitive to all the coe�cients in the
expansion, and Table IV illustrates that it is poorly con-
strained, except the case with the restrictive dipole as-
sumption. We will provide a final value for the axial

Typically quoted uncertainties are (too) small (e.g. compared to proton 
charge form factor!)

Inconsistent with QCD. 
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n p

μ-νμ

p p
deuteron

Deuterium bubble chamber data Fermilab 15-foot deuterium bubble 
chamber, PRD 28, 436 (1983)

• small statistics, ~3000 events in world data

• small(-ish) nuclear effects

• small(-ish) experimental uncertainties 

28 HIGH-ENERGY QUASIELASTIC v„n ~@ p SCATTERING IN. . . 439

80

60
Ot

P co.

h4, =1.05 GeV

tion, the following assumptions are made: (1) time-
reversal invariance and charge symmetry, (2) partially con-
served axial-vector current (PCAC} for the small pseudo-
scalar term, and (3) isotriplet-conserved-vector-current
(CVC) hypothesis.
The first assumption, which requires all form factors to

be real, yields Eq——F~——0, leading to the absence of second
class currents. With the second assumption, Fp(Q ) is
given by

20-

Fp(Q )=2M Fg(Q~)/(Q +m ),
where

'0 2
Q' (Gev')

FICx. S. The Q distribution for the selected quasielastic
events. The solid curve represents the differential cross section
of quasielastic scattering for the neutron in deuteron.

Q'= (P —P„)'—(E„—E„)' .
The contribution to the cross section from this term in the
energy region E„&5 GeV is less than 0.1%, and conse-
quently this term is neglected. The third assumption re-
lates Fz and Fz to the isovector Sachs electric and mag-
netic form factor, Gz and G~ determined from electron-
scattering experiments as follows:

near /=0 . The shaded area corresponds to the addition-
al events found from the rescan. Using the average of the
events with P between —90 and 126 (dashed line), we
calculated the event bias to be S%%uo. This does not neces-
sarily represent the true loss of events because of the
three-point plot per event. We examined the true event
loss from the event bias in Fig. 4 by using a Monte Carlo
simulation. This event loss amounts to 8% and is not
recovered by rescanning (shaded area). Hence, a correc-
tion of 1.08+0.05 has been made to the data independent
of scanning efficiency.
Figure 5 shows the Q distribution for the quasielastic

events. The curve in Fig. 5 is the best fit obtained by us-
ing the prediction of the differential cross section for reac-
tion (2) with M~ ——1.05 GeV which was obtained from
this experiment (see Sec. III). The X value from this ftt
was found to be 15 for 20 data points for Q between 0.1
and 3 GeV . Comparing the observed Q distribution to
the fitted curve, the correction factor for Q &0.1 GeV2 is
estimated to be 1.10+0.02. The overall correction factor
including scanning-measuring efficiency is 1.34+0.07.
We note that this correction factor influences the value of
the neutrino flux but not the Mz value, because we use a
flux-independent method to determine Mq.

III. MEASUREMENT OF THE FORM FACTOR

2 2
Fy(Q') = G~(Q')+ — G (Q') 1+

4M 4M

2
' —1

Ff(Q )=[6M(Q )—GE(Q )]g ' 1+
4M

2
' —2

GE(Q }=6M(Q }(1+/) =A(Q ) 1+
My

where M~ is the vector mass, Mv ——0.84 GeV, g is the
difference between the proton and neutron anomalous
magnetic moment,

g'=}Mp—p„=3.708,
and A, (Q ) (Ref. 1S) is the correction factor for the small
deviation of the electron-scattering data from a pure di-
pole form factor. We further assume the axial-vector
form factor in a dipole form,

+g(Q )=+g(0)/(I+Q /Mg )

where the value of F~(0)=—1.23+0.01 is taken from P-
decay experiments. '
From these assumptions, the differential cross section

for the quasielastic reaction can be expressed in terms of
only one parameter, Mz, as

In the context of the V—A theory, the matrix element
for the quasielastic reaction, v&n ~p p, can be written as
a product of the hadronic weak current and the leptonic
current. ' The general form of the hadronic weak current
is written in terms of six complex form factors which are
functions of Q and characterize the nucleon structure.
These are Fs (induced scalar), Fp (induced pseudoscalar),
F~ (isovector Dirac), Ff (isovector Pauli), F~ (axial vec-
tor}, and Fr (induced tensor). The quasielastic cross sec-
tion can be expressed in terms of these six form factors.
In order to simplify the analysis of the quasielastic reac-

GMcos8c 2 2 (s u)&( ')+&( )
dQ 8rrE„M

1

C(Q2) (s
—u) (7)

where s —u =4ME„Q m&, and M =(M„+—Mp)—/2.
The values of the Fermi constant and of the Cabibbo angle
are taken to be G =1.166 32& 10 GeV and
cos8c——0.9737, respectively (see Ref. 16). The structure

Best source of almost-free neutrons: deuterium

ANL 12-foot deuterium bubble 
chamber, PRD 26, 537 (1982)

BNL 7-foot deuterium bubble 
chamber, PRD23, 2499 (1981)

also:
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12

with extended range in energy and Q2 is given by Shen
et al. in Ref. [70].12 The Shen et al. model is overlaid
with the original Singh model as well as the free neutron
model in Fig. 6. The Shen et al. model deviates sub-
stantially from the free-neutron result at the ⇠ 20% level
over a broad Q2 range. These models do not constitute
an estimate of the uncertainty on deuteron corrections,
but suggest an avenue for future work even if there are
no future measurements on deuterium.

Assuming an energy independent, but Q2 dependent,
deuteron correction, the change in the fit results can
be compared. For illustration, we employ the results
of Ref. [70] at E⌫ = 1GeV, and limit attention to
Q2  1GeV2, i.e., the configuration of Table V and
Eq. (25). Shape parameter and minimum �2LL values
are

BNL : [ā
1

, �2LL] =

(
[1.99(15), 27.0] (Singh)

[2.16(14), 25.1] (Shen et al.)
,

ANL : [ā
1

, �2LL] =

(
[2.29(14), 30.5] (Singh)

[2.46(13), 29.2] (Shen et al.)
,

FNAL : [ā
1

, �2LL] =

(
[1.88(25), 8.2] (Singh)

[2.00(25), 9.1] (Shen et al.)
.

(30)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, and there is slight improvement
in fit quality for two of the three data sets.

D. Final systematic error budget

The most important systematic uncertainties are the
two that significantly modify the Q2 distribution: ac-
ceptance corrections and the deuteron correction. In our
final analysis, we modify the original fits displayed in Ta-
ble V. First, we allow a correlated acceptance correction
as in Eq. (28). Second, we include a 10% error added
in quadrature to statistical error in each Q2 bin to ac-
count for residual deuteron or other systematic correc-
tions, as described at the end of Sec. IVB. With these
corrections in place, we perform a �2 fit to all data up to
Q2 = 1GeV2. The neglect of data above Q2 = 1GeV2

has only minor impact on the extraction of FA(q2), and
allows a simple treatment of these combined uncertain-
ties with full covariance using a �2 fit.

As an alternative, we also provide a log-likelihood fit to
the data up to Q2 = 3GeV2, but without inflated errors
to account for deuterium and other residual systematics.
This has the benefit of including data over the entire
kinematic range, but omits sources of systematic error
that would need to be treated separately.

12 See also Ref. [80].

VI. AXIAL FORM FACTOR EXTRACTION

The best axial form factor is extracted from a joint fit
to the three datasets. We choose Na = 4 free parameters
with t

0

= toptimal

0

(1GeV2) and data with Q2  1GeV2.
As discussed above, this corresponds to a k

max

= 8 z
expansion, where five linear combinations of coe�cients
are fixed by the Q2 = 0 constraint and by the four sum
rules (16). The acceptance correction free parameter is
independent for each experiment in the joint fit.
Our knowledge of the axial form factor resulting from

deuterium scattering data is summarized by constraints
on the coe�cients ak. Central values and 1� errors de-
termined from ��2 = 1 are13

[a
1

, a
2

, a
3

, a
4

] = [2.30(13),�0.6(1.0),�3.8(2.5), 2.3(2.7)] .
(31)

The diagonal entries of the error (covariance) matrix,
computed from the inverse of the Hessian matrix for
�2({ak}), are

E
diag. = [0.0154, 1.08, 6.54, 7.40] . (32)

Note that (E
diag.)i ⇡ (�ai)2, reflecting approximately

Gaussian behavior. The four-dimensional correlation
matrix is

Cij =

0

BBB@

1 0.350 �0.678 0.611

0.350 1 �0.898 0.367

�0.678 �0.898 1 �0.685

0.611 0.367 �0.685 1

1

CCCA
. (33)

and as usual the error matrix is given by Eij = �ai�ajCij .
This description can be systematically improved when
and if further data or externally constrained deuterium
models become available. The form factor is plotted ver-
sus Q2 and versus z in Fig. 7, and compared with a pre-
vious world average dipole form factor from Ref. [53]
We also provide an alternate log-likelihood determina-

tion of the axial form factor to the range Q2 < 3.0 GeV2,
but without deuteron systematic corrections. Central
values and 1� errors determined from �(�2LL) = 1 are

[a
1

, a
2

, a
3

, a
4

] = [2.28(8), 0.25(95),�5.2(2.3), 2.6(2.7)] .
(34)

The diagonal entries of the error matrix are

E
diag

= [0.00635, 0.781, 4.49, 6.87] , (35)

13 The complete specification for the form factor involves the
normalization gA = �1.2723 from Table I; the pion mass
m⇡ = 0.14GeV employed in the specification of t

cut

= 9m2

⇡
in Eq. (12); and the choice t

0

= �0.28GeV2. The remaining co-
e�cients, a

0

, a
5

, a
6

, a
7

and a
8

, are determined by FA(0) = gA,
and by the sum rule constraints (16); for ease of comparison
we list the complete list of central values here: [a

0

, · · · , a
8

] =
[�0.759, 2.30,�0.6,�3.8, 2.3, 2.16,�0.896,�1.58, 0.823].
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with extended range in energy and Q2 is given by Shen
et al. in Ref. [70].12 The Shen et al. model is overlaid
with the original Singh model as well as the free neutron
model in Fig. 6. The Shen et al. model deviates sub-
stantially from the free-neutron result at the ⇠ 20% level
over a broad Q2 range. These models do not constitute
an estimate of the uncertainty on deuteron corrections,
but suggest an avenue for future work even if there are
no future measurements on deuterium.

Assuming an energy independent, but Q2 dependent,
deuteron correction, the change in the fit results can
be compared. For illustration, we employ the results
of Ref. [70] at E⌫ = 1GeV, and limit attention to
Q2  1GeV2, i.e., the configuration of Table V and
Eq. (25). Shape parameter and minimum �2LL values
are

BNL : [ā
1

, �2LL] =

(
[1.99(15), 27.0] (Singh)

[2.16(14), 25.1] (Shen et al.)
,

ANL : [ā
1

, �2LL] =

(
[2.29(14), 30.5] (Singh)

[2.46(13), 29.2] (Shen et al.)
,

FNAL : [ā
1

, �2LL] =

(
[1.88(25), 8.2] (Singh)

[2.00(25), 9.1] (Shen et al.)
.

(30)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, and there is slight improvement
in fit quality for two of the three data sets.

D. Final systematic error budget

The most important systematic uncertainties are the
two that significantly modify the Q2 distribution: ac-
ceptance corrections and the deuteron correction. In our
final analysis, we modify the original fits displayed in Ta-
ble V. First, we allow a correlated acceptance correction
as in Eq. (28). Second, we include a 10% error added
in quadrature to statistical error in each Q2 bin to ac-
count for residual deuteron or other systematic correc-
tions, as described at the end of Sec. IVB. With these
corrections in place, we perform a �2 fit to all data up to
Q2 = 1GeV2. The neglect of data above Q2 = 1GeV2

has only minor impact on the extraction of FA(q2), and
allows a simple treatment of these combined uncertain-
ties with full covariance using a �2 fit.

As an alternative, we also provide a log-likelihood fit to
the data up to Q2 = 3GeV2, but without inflated errors
to account for deuterium and other residual systematics.
This has the benefit of including data over the entire
kinematic range, but omits sources of systematic error
that would need to be treated separately.

12 See also Ref. [80].

VI. AXIAL FORM FACTOR EXTRACTION

The best axial form factor is extracted from a joint fit
to the three datasets. We choose Na = 4 free parameters
with t

0

= toptimal

0

(1GeV2) and data with Q2  1GeV2.
As discussed above, this corresponds to a k

max

= 8 z
expansion, where five linear combinations of coe�cients
are fixed by the Q2 = 0 constraint and by the four sum
rules (16). The acceptance correction free parameter is
independent for each experiment in the joint fit.
Our knowledge of the axial form factor resulting from

deuterium scattering data is summarized by constraints
on the coe�cients ak. Central values and 1� errors de-
termined from ��2 = 1 are13

[a
1

, a
2

, a
3

, a
4

] = [2.30(13),�0.6(1.0),�3.8(2.5), 2.3(2.7)] .
(31)

The diagonal entries of the error (covariance) matrix,
computed from the inverse of the Hessian matrix for
�2({ak}), are

E
diag. = [0.0154, 1.08, 6.54, 7.40] . (32)

Note that (E
diag.)i ⇡ (�ai)2, reflecting approximately

Gaussian behavior. The four-dimensional correlation
matrix is

Cij =

0

BBB@

1 0.350 �0.678 0.611

0.350 1 �0.898 0.367

�0.678 �0.898 1 �0.685

0.611 0.367 �0.685 1

1

CCCA
. (33)

and as usual the error matrix is given by Eij = �ai�ajCij .
This description can be systematically improved when
and if further data or externally constrained deuterium
models become available. The form factor is plotted ver-
sus Q2 and versus z in Fig. 7, and compared with a pre-
vious world average dipole form factor from Ref. [53]
We also provide an alternate log-likelihood determina-

tion of the axial form factor to the range Q2 < 3.0 GeV2,
but without deuteron systematic corrections. Central
values and 1� errors determined from �(�2LL) = 1 are

[a
1

, a
2

, a
3

, a
4

] = [2.28(8), 0.25(95),�5.2(2.3), 2.6(2.7)] .
(34)

The diagonal entries of the error matrix are

E
diag

= [0.00635, 0.781, 4.49, 6.87] , (35)

13 The complete specification for the form factor involves the
normalization gA = �1.2723 from Table I; the pion mass
m⇡ = 0.14GeV employed in the specification of t

cut

= 9m2

⇡
in Eq. (12); and the choice t

0

= �0.28GeV2. The remaining co-
e�cients, a

0

, a
5

, a
6

, a
7

and a
8

, are determined by FA(0) = gA,
and by the sum rule constraints (16); for ease of comparison
we list the complete list of central values here: [a

0

, · · · , a
8

] =
[�0.759, 2.30,�0.6,�3.8, 2.3, 2.16,�0.896,�1.58, 0.823].

• FA with complete error budget: 
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FIG. 7. Final form factor from Eqs. (31), (32) and (33).
Also shown is the dipole axial form factor with axial mass
mA = 1.014(14) GeV [54].

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [54]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].
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and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [54]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].
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Derived observables:  1) axial radius

6

higher order in k,

|ak/a0|  25/k , k > 5. (20)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit.

We investigate a range of k
max

, other choices of t
0

,
and alternatives to Eqs. (19) and (20), which are briefly
reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (15). We enforce the sum rule constraints (18)
and use the default bounds on the coe�cients ak in
Eqs. (19),(20). The results are summarized in Table IV
and displayed in Figs. 1 and 2. For the Na = 4 fits in
Table IV,

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.23(10), 0.5(1.0), -5.3(2.5), 2.1(2.7)] (BNL)

[2.24(10), 0.1(0.9), -4.7(2.3), 2.6(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(21)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

For Na = 4, the shape parameter (24) is determined by
the di↵erent datasets as displayed in Eq. (21). The fits
summarized in Table IV also include variations with dif-
ferent number of free parameters. To summarize briefly,
the leading coe�cient almost does not change as more
parameters are added. This is summarized [TODO clean
the bara notation, which is introduced later.]

[a
1

(BNL), a
1

(ANL), a
1

(FNAL)]

=

8
><

>:

[2.22(10), 2.22(10), 2.02(14) ] , Na = 3

[2.23(10), 2.24(10), 2.02(14) ] , Na = 4

[2.21(10), 2.24(10), 2.01(14) ] , Na = 5

. (22)

As discussed after Eq. (17), z2, z3, z4, etc., terms in the z
expansion become increasingly irrelevant, corresponding
to |z|

max

⌧ 1.0 in Table III. This is borne out by the
data, which determines a form factor with coe�cients of
order 1.0 that mostly don’t push the Gaussian bounds,
and the leading coe�cient is approximately the same re-
gardless of how many orders in z are used.

In addition to the full form factor, the axial “charge”
radius can be defined via the form factor slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (23)
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

This quantity is sensitive to all the coe�cients in the
expansion, and Table IV illustrates that it is poorly con-
strained, except the case with the restrictive dipole as-
sumption. We will provide a final value for the axial

• order of magnitude larger uncertainty compared to historical dipole fits

• impacts comparison to other data, e.g. pion electroproduction, muon 
capture
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and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [53]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].
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Derived observables:  2) neutrino-nucleon quasi elastic cross sections
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FIG. 8. Free nucleon CCQE cross section computed
from Eqs. (31), (32) and (33), for neutrino-neutron (top)
and antineutrino-proton (bottom) scattering. Also shown
are results using dipole axial form factor with axial mass
mA = 1.014(14) GeV [54].

energies, the cross sections and uncertainties shown in
Fig. 8 are

�⌫n!µp(E⌫ = 1GeV) = 10.1(0.9)⇥ 10�39 cm2 ,

�⌫n!µp(E⌫ = 3GeV) = 9.6(0.9)⇥ 10�39 cm2 , (38)

for neutrinos and

�⌫̄p!µn(E⌫ = 1GeV) = 3.83(23)⇥ 10�39 cm2 ,

�⌫̄p!µn(E⌫ = 3GeV) = 6.47(47)⇥ 10�39 cm2 , (39)

for antineutrinos.
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FIG. 9. Cross section for charged-current quasielastic events
from the MINERvA experiment [55] as a function of re-
constructed Q2, compared with prediction using relativistic
Fermi gas nuclear model with z expansion axial form factor
extracted from deuterium data. MINERvA data uses an up-
dated flux prediction from [81]. Also shown are results using
the same nuclear model but dipole form factor with axial mass
mA = 1.014(14) GeV [54].

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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FIG. 8. Free nucleon CCQE cross section computed
from Eqs. (31), (32) and (33), for neutrino-neutron (top)
and antineutrino-proton (bottom) scattering. Also shown
are results using dipole axial form factor with axial mass
mA = 1.014(14) GeV [55].

energies, the cross sections and uncertainties shown in
Fig. 8 are

�⌫n!µp(E⌫ = 1GeV) = 10.1(0.9)⇥ 10�39 cm2 ,

�⌫n!µp(E⌫ = 3GeV) = 9.6(0.9)⇥ 10�39 cm2 , (38)

for neutrinos and

�⌫̄p!µn(E⌫ = 1GeV) = 3.83(23)⇥ 10�39 cm2 ,

�⌫̄p!µn(E⌫ = 3GeV) = 6.47(47)⇥ 10�39 cm2 , (39)

for antineutrinos.
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FIG. 9. Cross section for charged-current quasielastic events
from the MINERvA experiment [56] as a function of re-
constructed Q2, compared with prediction using relativistic
Fermi gas (RFG) nuclear model with z expansion axial form
factor extracted from deuterium data. MINERvA data uses
an updated flux prediction from [82]. Also shown are results
using the same nuclear model but dipole form factor with
axial mass mA = 1.014(14) GeV [55].

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [56]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [55]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code is currently available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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discriminating nuclear models

n p

μ-νμ

poorly known axial form factor

�(⌫n ! µp) = | · · ·FA(q
2) · · · |2

want to extract nuclear and flux effects 
from this comparison: but large 
nucleon level form factor uncertainty

ab initio methods and extensions, e.g. 
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of the isovector axial form factor, and the strange vector form factors, taking the remaining form factors854

from other sources. An amplitude was measured for F
A

(q2) at Q2 = �q2 = 0.22 and 0.63 GeV2, but with855

insu�cient precision to extract shape information. The process e+d ! ⌫̄
e

pp is another possibility to access856

the charged current nucleon interaction, e+n ! ⌫̄
e

p using electron (positron) beams. No measurements857

of this process currently exist.858

5.2.4 Summary of complementary constraints859

0.2 0.4 0.6 0.8 1

PSfrag replacements
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A

(fm2)

�d (dipole) [17]

eN � eN �⇡ (dipole) [17]

�C (dipole) [20]

�d (z exp.) [19]

MuCap this work

LHPC [21]

ETMC [22]

CLS [23]

PNDME [24]

lattice QCD

�
������

������

Figure 7: (color online) Axial radius determined by di↵erent processes. Data points are as in Table 1.
The hashed red region represents the average obtained in this work, obtained from the z expansion ⌫d and
MuCap results [cf. Eq. (36)]. The hatched blue band represents the average of the dipole ⌫d and dipole
eN ! eN 0⇡ results from Ref. [17]. Values labeled “dipole” enforce the dipole shape ansatz. The value
labeled “z exp.” uses the model independent z expansion. The green point represents the MiniBooNE
dipole fit [20] to ⌫-C scattering data, and does not account for nuclear model uncertainty.

A range of processes and techniques have potential to help constrain the nucleon axial radius. Some860

of these, such as pion electroproduction and parity violating electron-proton scattering, access the form861

factor and radius indirectly and su↵er significant model-dependent corrections that need to be further862

addressed to achieve ⇠ 10% accuracy on r2

A

. Lattice QCD and elementary target neutrino scattering are863

potentially pristine theoretical or experimental approaches. However, lattice QCD has not yet achieved864

the requisite accuracy, and hydrogen or deuterium active target neutrino experiments are fraught with865

surmountable but di�cult technical and safety issues. Figure 7 displays the range of values for r2

A

as866

tabulated in Table 1, including the MuCap determination presented in this paper. Our average, Eq. (36),867

is obtained from the z expansion ⌫d and MuCap results, which have complete error budgets. The future868

is sure to witness an interesting complementarity between di↵erent approaches to axial nucleon structure,869

with a wide range of constraints and applications.870

26

1 Introduction54

Muonic hydrogen, the electromagnetic bound state of a muon and proton, is a theoretically pristine atomic55

system. As far as we know, it is governed by the same interactions as ordinary hydrogen, but with the56

electron of mass 0.511 MeV replaced by the heavier muon of mass 106 MeV, an example of electron-muon57

universality. That mass enhancement (⇠207) manifests itself in much larger atomic energy spacings and a58

smaller Bohr radius of 2.56⇥10�3Å. This places the muonic hydrogen size about halfway (logarithmically)59

between the atomic angstrom and the nuclear fermi (1 fm = 10�5Å) scale.60

Those di↵erences make muonic hydrogen very sensitive to otherwise tiny e↵ects such as those due to61

proton size and nucleon structure parameters governing weak interaction phenomenology. Indeed, muonic62

hydrogen Lamb shift spectroscopy [1, 2] has provided a spectacularly improved measurement of the proton63

charge radius that di↵ers by about 7 standard deviations from the previously accepted value inferred from64

ordinary hydrogen and electron-proton scattering [3]. (That so called Proton Radius Puzzle is currently65

unresolved [4–6]). Similarly, the larger muon mass kinematically allows the weak muon capture process66

depicted in Fig. 1,67

µ� + p ! ⌫
µ

+ n , (1)

to proceed, while ordinary hydrogen is (fortunately for our existence) stable.68

W+

p

µ�

n

⌫µ

Figure 1: Muon capture on the proton, µ�p ! ⌫
µ

n, via charged W boson exchange.

Weak muon capture in nuclei has provided a historically important probe of weak interactions and a69

window for studying nuclear structure. In particular, weak capture in muonic hydrogen is a sensitive probe70

of the induced pseudoscalar component of the axial current p ! n matrix element which is well predicted71

from the chiral properties of QCD. However, early experimental determinations of that pseudoscalar72

coupling, ḡ
P

,1 had, for some time, appeared problematic [7]. All ḡ
P

extractions from ordinary muon73

capture in hydrogen su↵ered from limited precision, while the more sensitive extraction from radiative74

muon capture [8] disagreed with ordinary muon capture and the solid prediction of Chiral Perturbation75

Theory (�PT) [9–13]. An important underlying contribution to this problem was the chemical activity of76

muonic hydrogen, which like its electronic sibling, can form molecular ions, (ppµ)+. The highly spin de-77

pendent weak interaction leads to very di↵erent capture rates from various muonic atomic and molecular78

states. Thus, atomic physics processes like ortho-para transitions in the muonic molecule, which flip the79

proton spins, significantly change the observed weak capture rates and often clouded the interpretation80

of experimental results in the 55-year history of this field. Unfortunately, the uncertainty induced by81

molecular transitions was particularly severe for the most precise measurements which were performed82

with high density liquid hydrogen targets, where, because of rapid ppµ formation, essentially capture from83

the molecule, not the pµ atom, is observed. This problem was resolved by the MuCap Collaboration at84

1The quantity ḡP is defined at the characteristic momentum q2

0

for muon capture, see Eqs. (8),(23) below.

3

• potential factor ~3 improvement from next generation muon capture 
experiment

RJH, Kammel, Marciano, Sirlin 1708.08462

muon capture constraints
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Figure 6: (color online) Quasielastic neutrino-neutron cross section. Reference fit of Ref. [19] in green
band shows the current uncertainty. The yellow band shows the uncertainties independent of r2

A

. The
hatched black band shows the uncertainty contribution from r2

A

, if r2

A

would be known to 20% (using the
central value from the reference fit). In that case, the r2

A

contribution would be subdominant in the total
error (quadratic sum of yellow and black hatched), as illustrated at E

⌫

= 1GeV in Eq. (40).

External constraints on r2

A

, used in conjunction with the existing deuteron target neutrino scattering748

data, can thus lead to a halving of the uncertainty on the elementary signal cross section for long baseline749

neutrino experiments. Advances in our quantitative understanding of neutrino scattering, through im-750

provements in r2

A

, heavy nuclear target modeling and direct precise neutrino cross-section measurements751

will allow us to fully exploit the planned sensitivity of future oscillation experiments.752

5.2 Other constraints and applications753

Given the importance of r2

A

, and more generally F
A

(q2), let us understand what complementary infor-754

mation exists from other approaches. This information comes from theoretical approaches to determine755

F
A

(q2) from the QCD Lagrangian; and from experimental measurements using weak and electromagnetic756

probes of the nucleon.757

5.2.1 Lattice QCD758

Lattice QCD is a computational method for determining low energy properties of hadrons based on first759

principles starting from the QCD Lagrangian.20 This method has reached a mature state for meson760

properties.21 Nucleons present an additional challenge for lattice simulations, owing to a well-known761

noise problem [104]. A variety of approaches are being taken to explore and address the simultaneous762

20For a brief introduction and references see the lattice QCD review of S. Hashimoto, J. Laiho and S. R. Sharpe in Ref. [53].
21For a review and further references, see Ref. [103].

23

existing error (no external 
radius constraint)

with radius constraint: ( hatched: 
external radius error δrA2=20% ) 

implications for quasielastic neutrino cross sections
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Figure 5: (color online) Relation between g
A

and r2

A

from electron and muon processes. The black band
shows g

A

from neutron � decay (Table 2). The green band denotes the g
A

� r2

A

region consistent with
the present MuCap result within 1-sigma, the yellow band the potential of a future 3-times improved
measurement (the same central value has been assumed). The current value and uncertainty in r2

A

from
the neutrino scattering analysis is shown by vertical lines. If r2

A

would be known to 1%, the future
experiment would determine g

A

within the red region.

e↵ective neutrino species from primordial nucleosynthesis; computing reactor and solar neutrino fluxes and638

cross-sections; parametrizing the proton spin content and testing the Goldberger-Treiman relation [95].639

In this paper we use the value g
A

= 1.2749(9), based on the PDG value for ⌧
n

and V
ud

given in Table 2.640

We should note, however, that a recent trapped neutron lifetime experiment at Los Alamos [96] with very641

small systematic uncertainties finds ⌧
n

= 877.7(7) s, in strong support of earlier trapped neutron results.642

Roughly estimating the e↵ect of the new result on the neutron lifetime average suggests a preliminary643

average ⌧ave.

n

= 879.3(9) s. This shorter average lifetime leads to a larger g
A

= 1.2757(7) which is very644

consistent with the most recent direct neutron decay asymmetry measurements of g
A

[53]. Of course, a645

larger g
A

used as input will lead to a larger ḡMuCap

P

= 8.24(84), but one still fully consistent with theory,646

ḡ
P

theory = 8.25(25). The error on g
A

is expected to be further reduced to about ±0.01%, by future ⌧
n

647

and direct neutron decay asymmetries. It will be interesting to see if the two methods agree at that level648

of precision.649

For now, the value of r2

A

obtained from the z expansion fit to neutrino-nucleon quasi-elastic scattering650

together with the MuCap singlet muonic Hydrogen capture rate ⇤MuCap

singlet

can be used in Eq. (25) to obtain651

a muon based value, g
A

= 1.276(8)
r

2

A
(8)

MuCap

= 1.276(11). That overall roughly ±1% sensitivity is to652

be compared with the current, better than ±0.1%, determination of g
A

from the electron based neutron653

lifetime that we have been using in our text, or the preliminary update including Ref. [96] given above.654

The good agreement can be viewed as a test of electron-muon universality in semileptonic charged current655

interactions at roughly the 1% level. We have described how a factor of 3 improvement in the MuCap656

20

test of electron-muon universality

electron coupling (neutron lifetime)

current uncertainty

muon coupling (current uncertainty)
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2. the universal WIMP-nucleon cross section
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Electroweak charged WIMP Mechanism versus WIMP Model 

- SUSY wino

- Weakly Interacting Stable Pion 

- Minimal Dark Matter

x
x

x

xx

Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,

M+�!��
�

�
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3
� 5⇡2

4
� 7i⇡

4

�

+ O(↵, m� , �/mW ,
p

�/M, m3

W /M3)

�

. (19)

The renormalization constant Z�
2

is inherited from the electroweak symmetric Lagrangian (2) and

ZW
1

, ZW
2

are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for

6Following the conventions of [77], bare Lagrangian fields and parameters are given by (W a
µ )

bare = (ZW
2 )1/2W a

µ ,

gbare2 = ZW
1 (ZW

2 )�3/2g2.

11

N N

Mechanisms versus models

- ...

Focus on self-conjugate SU(2) triplet.  Could be: 



Present null results of direct detection and collider 
searches may indicate large WIMP/New Physics mass scale

20

0

mW

mass spectrum of beyond-
standard model states

mass



Present null results of direct detection and collider 
searches may indicate large WIMP/New Physics mass scale

20

0

mW

mass spectrum of beyond-
standard model states

mass

If WIMP mass M >> mW , isolation (M’-M >> mW) becomes generic.   Expand in mW/M, mW/(M’-M)  

Large WIMP mass regime is a focus of future experiments in direct, indirect and collider probes 

0

mW

M

M 0

→
lightest BSM multiplet

next-to-lightest BSM 
multiplet
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energy/
renormalization
scale (GeV)

Five distinct regimes relevant for scattering on nuclear targets

 EW symmetric “Heavy WIMP effective theory”  

Heavy quark threshold matching

Nucleon matrix elements

Renormalization of composite operators

mW

⇤QCD

Enuclear

mb, mc }quarks, gluons

new physics

hadrons

}

}
“SM anatomy” of interactions between weak and hadronic scales

1

5

80
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Heavy WIMP Effective Theory

• Present null results may point to ≳ TeV 
WIMP mass

• This regime has important challenges and 
simplifications

Take as basic WIMP: SU(3) x SU(2) x U(1)

1 3 0

Many results independent of WIMP spin, and elementary vs. 
composite nature of WIMP (e.g. wino, composite scalar, … ) 

spin

s
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x x

...

W,Z,...

nucleon

basic problem in SM physics: scattering of nucleon from 
SU(2)xU(1) source

nucleon

FB!D(v0 = v) = 1 + . . .

�(�N ! �N) =?

- hydrogen/deuterium spectroscopy 

- heavy meson B/B* transitions 

- DM interactions

En(H) = �1

2
me(Z↵)2 + . . . (meZ↵) ⌧ me

⇤QCD ⌧ mb,c

mW ⌧ m�

Many manifestations of heavy particle symmetry: 

Direct detection
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇤�2
2(µt)][J(J +

1)/2], xh ⇤ mh/mW and xt ⇤ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)
2 (µt) = C�s(µt)

4⇤

�
1

3x2
h

+
3 + 4xt + 2x2

t

6(1 + xt)2

⇥
,

c(2)
2 (µt) = C�s(µt)

4⇤

�
� 32

9
log

µt

mW
� 4� 4(2 + 3xt)

9(1 + xt)3
log

µt

mW (1 + xt)

� 4(12x5
t � 36x4

t + 36x3
t � 12x2

t + 3xt � 2)

9(xt � 1)3
log

xt

1 + xt
� 8xt(�3 + 7x2

t )

9(x2
t � 1)3

log 2

� 48x6
t + 24x5

t � 104x4
t � 35x3

t + 20x2
t + 13xt + 18

9(x2
t � 1)2(1 + xt)

⇥
. (21)

There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge to compute the gluon operator coe⇤cients [10].
The e�ective theory subtractions indicated in Fig. 2, are e⇤ciently performed in a scheme
with massless light quarks, using dimensional regularization as infrared regulator; we have
obtained the same result using finite masses and taking the limit mq/mW ⇧ 0. Details of this
computation will be presented elsewhere. [Equation with explicit integral?]

5 RG evolution to hadronic scales

To account for large logarithms, e.g. log mW /µ0, that appear when hadronic matrix elements
are evaluated at µ0 ⌅ GeV, we employ the renormalization group evolution of the leading
power operators.

7

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧⌥

q

⇤
c(0)1q O

(0)
1q + c(2)1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)2 O(0)

2 + c(2)2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6

25

• the heavy lifting is necessary: large gluon matrix 
element, amplitude cancellations
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2

(pure states), the above lagrangian is completely
specified by electroweak quantum numbers since
gauge-invariance implies f(H) = 0, and �m can be
chosen to vanish for degenerate heavy-particle states.
In particular, the first term in (1) does not depend
on the WIMP mass, spin or other properties beyond
the choice of gauge quantum numbers. Model de-
pendence is systematically encoded in operator co-
e�cients representing 1/M corrections. For exten-
sions with two electroweak multiplets (mixed states),
f(H) and �m are non-vanishing and depend on �,
the mass splitting of the multiplets, and , their cou-
pling strength mediated by the Higgs field.

Weak-scale matching. Interactions of the lightest,
electrically neutral, self-conjugate WIMP, �v, with
quarks and gluons, relevant for spin-independent (SI),
low-velocity scattering with a nucleon, are given at
energies E ⌧ mW by the EFT

L�v,SM =
�̄v�v

m3
W

X

S

X

q

c(S)
q O(S)

q +c(S)
g O(S)

g

�
+. . . ,

(2)

where q = u, d, s, c, b is an active quark flavor and
we have chosen QCD quark and gluon operators of

definite spin, S = 0, 2: O(0)
q = mq q̄q, O

(0)
g = (GA

µ⌫)
2,

O(2)µ⌫
q = 1

2 q̄
⇣
�{µiD⌫}

� � gµ⌫iD/ �/4
⌘
q, and O(2)µ⌫

g =

�GAµ�GA⌫
� + gµ⌫(GA

↵�)
2/4. Here Dµ

� ⌘
�!
Dµ � �Dµ,

and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 denotes sym-
metrization. The ellipsis in Eq. 2 denotes higher-
dimension operators suppressed by powers of 1/mW .

We match EFTs (1) and (2) at reference scale
µt ⇠ mW ⇠ mt by integrating out weak scale par-
ticles W±, Z0, h0 and t. In the heavy WIMP limit,
matching coe�cients, ci, of (2) may be expanded as

ci = ci,0 + ci,1
mW

M
+ . . . . (3)

We compute the complete set of twelve matching co-
e�cients ci,0 at leading order in perturbation theory.

Weak-scale matching for mixed states requires
renormalization of the Higgs-WIMP vertex for a con-
sistent evaluation of loop-level amplitudes, and a gen-
eralized basis of heavy-particle loop integrals to ac-
count for non-vanishing residual masses. Details of
the matching computation can be found in [4].

QCD analysis. Having encoded physics of the
heavy WIMP sector in matching coe�cients of (2),
the remaining analysis is independent of the M �
mW assumption, and consists of renormalization
group (RG) running to a low scale µ0 < mc, matching

N
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FIG. 1: SI cross section for low-velocity scattering on
the proton as a function of mh, for the pure-triplet case.
Labels refer to inclusion of LO, NLO, NNLO and NNNLO
corrections in the RG running from µc to µ0 and in the
spin-0 gluon matrix element. Bands represent 1� uncer-
tainty from neglected higher order pQCD corrections.

at heavy quark thresholds, and evaluating hadronic
matrix elements. This module is systematically im-
provable in subleading corrections and is applicable
to generic direct detection calculations. An extension
of the operator basis would allow robust connections
between contact interactions constrained at colliders
and low-energy observables of direct detection [7].
RG evolution accounts for perturbative corrections
involving large logarithms, e.g., ↵s(µ0) logmt/µ0.
Fig. 1 illustrates the impact of higher order pQCD
corrections. We collect in Refs. [3, 5] the details
of mapping high-scale matching coe�cients onto the
low-energy theory where hadronic matrix elements
are evaluated [24]. Cross sections for scattering on
the neutron and proton are numerically similar; we
present results for the latter.

Pure-state cross sections. Consider the situation
where the SM is extended by a single electroweak
multiplet. For definiteness let us take the cases of
a Majorana SU(2)W triplet of Y = 0, and a Dirac
SU(2)W doublet of Y = 1

2 . For the doublet we
assume that higher-dimension operators cause the
mass eigenstates after electroweak symmetry break-
ing (EWSB) to be self-conjugate combinations D1

andD2, thus forbidding a tree-level �̄v�vZ0 coupling,
and moreover that inelastic scattering is suppressed.

Upon performing weak-scale matching [4] and map-
ping to a low-energy theory for evaluation of matrix
elements [5], we obtain parameter-free cross section
predictions as illustrated in Fig. 2. The triplet cross
section is

�T
SI = 1.3+1.2

�0.5
+0.4
�0.3 ⇥ 10�47 cm2, (4)

where the first (second) error represents 1� uncer-

• the heavy lifting is necessary
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Benchmarks: large mass, low velocity limit
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

mHiggs(GeV)

�
sp

in
.i
n
d
ep

.

RJH, M. Solon (2014)

- 1/M power corrections under investigation
C.-Y. Chen, RJH, M. Solon, A. Wijangco, to appear

- Suppressed versus dimensional estimate (~10-45cm2)
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

SU(2) triplet: 
dimensional estimate

complete heavy WIMP 
EFT computation

• the heavy lifting is necessary

Snowmass 2013
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3. the proton radius puzzle
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Some facts about the proton radius puzzle

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• >5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy
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Some facts about the proton radius puzzle

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• >5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy

3) E.g. systematic effects in electron-proton 
scattering impact neutrino-nucleus scattering, 
at a level large compared to long baseline  
precision requirements

This is everybody’s problem (HEP, NP,AMO,…):
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Recall hydrogen spectrum: 

Disentangle 2 unknowns, R∞ and rE, using well-measured 1S-2S 
hydrogen transition and 

En ⇠ R1
n2

+
r2E
n3

hcR1 =
mec2↵2

2
⇡ 13.6 eV proton charge radius

33

electron-based
measurements

muon-based
 measurements



Recall hydrogen spectrum: 

Disentangle 2 unknowns, R∞ and rE, using well-measured 1S-2S 
hydrogen transition and 

- another hydrogen interval

En ⇠ R1
n2

+
r2E
n3

hcR1 =
mec2↵2

2
⇡ 13.6 eV proton charge radius

33

electron-based
measurements

muon-based
 measurements



Recall hydrogen spectrum: 

Disentangle 2 unknowns, R∞ and rE, using well-measured 1S-2S 
hydrogen transition and 

- electron-proton scattering determination of rE

- another hydrogen interval

En ⇠ R1
n2

+
r2E
n3

hcR1 =
mec2↵2

2
⇡ 13.6 eV proton charge radius

33

electron-based
measurements

muon-based
 measurements



Recall hydrogen spectrum: 

Disentangle 2 unknowns, R∞ and rE, using well-measured 1S-2S 
hydrogen transition and 

- electron-proton scattering determination of rE

- a muonic hydrogen interval

- another hydrogen interval

En ⇠ R1
n2

+
r2E
n3

hcR1 =
mec2↵2

2
⇡ 13.6 eV proton charge radius

33

electron-based
measurements

muon-based
 measurements



7σ discrepancy between electron-based versus muon-based 
measurements
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atoms formed. Themeasurement times varied between 3 and 13 h per
laser wavelength. The 75-ns-long laser time window, in which the
laser induced Ka events are expected, is indicated in Fig. 4. We have
recorded a rate of 7 events per hour in the laser timewindowwhen on
resonance. The background of about 1 event per hour originates
mainly from falsely identified muon-decay electrons and effects
related to delayed muon transfer to target walls.

Figure 5 shows the measured 2S–2P resonance curve. It is obtained
by plotting the number of Ka events recorded in the laser timewindow,
normalized to thenumber of events in thepromptpeak, as a functionof
the laser frequency. In total, we have measured 550 events in the res-
onance, where we expect 155 background events. The fit to the data is a
Lorentzian resonance line on top of a flat background. All four para-
meters (Lorentzian amplitude, position and width, as well as back-
ground amplitude) were varied freely. A maximum likelihood fit
using CERN’s ROOT analysis tool accounted for the statistics at each
laser wavelength. Our statistical uncertainties are the 1s confidence
intervals.

Weobtain a centroid position of 49,881.88(70)GHz, and awidth of
18.0(2.2)GHz, where the given uncertainties are the 1 s.d. statistical
uncertainties. The width compares well with the value of 20(1)GHz
expected from the laser bandwidth and Doppler- and power-broad-
ening of the natural line width of 18.6GHz. The resulting background
amplitude agrees with the one obtained by a fit to data recorded
without laser (not shown). We obtain a value of x25 28.1 for 28
degrees of freedom (d.f.). A fit of a flat line, assuming no resonance,
gives x25 283 for 31 d.f., making this resonance line 16s significant.

The systematic uncertainty of our measurement is 300MHz. It
originates exclusively from our laser wavelength calibration proced-
ure. We have calibrated our line position in 21 measurements of 5
different water vapour absorption lines in the rangel5 5.49–6.01mm.
The positions of these water lines are known28 to an absolute precision
of 1MHz and are tabulated in the HITRAN database29. The measured
relative spacingbetween the 5 lines agreeswith thepublishedones.One
suchmeasurement of awater vapour absorption line is shown in Fig. 5.
Our quoted uncertainty of 300MHz comes from pulse to pulse fluc-
tuations and a broadening effect occurring in the Raman process. The
FSRof the reference Fabry–Perot cavity does not contribute, as the FSR
is known better than 3 kHz and the whole scanned range is within 70
FSR of thewater line. Other systematic correctionswe have considered
are Zeeman shift in the 5T field (,30MHz), a.c. and d.c. Stark shifts
(,1MHz), Doppler shift (,1MHz) and pressure shift (,2MHz).
Molecular effects do not influence our resonance position because
the formed muonic molecules ppm1 are known to de-excite quickly30

and do not contribute to our observed signal. Also, the width of our
resonance line agrees with the expectedwidth, whereasmolecular lines
would be wider.

The centroid position of the 2SF~1
1=2 {2PF~2

3=2 transition is
49,881.88(76)GHz, where the uncertainty is the quadratic sum of
the statistical (0.70GHz) and the systematic (0.30GHz) uncertainties.
This frequency corresponds to an energy of DẼ5 206.2949(32)meV.
From equation (1), we deduce an r.m.s. proton charge radius of
rp5 0.84184(36)(56) fm, where the first and second uncertainties ori-
ginate respectively from the experimental uncertainty of 0.76GHzand
the uncertainty in the first term in equation (1). Theory, and here
mainly the proton polarizability term, gives the dominant contri-
bution to our total relative uncertainty of 83 1024. Our experimental
precision would suffice to deduce rp to 43 1024.

This new value of the proton radius rp5 0.84184(67) fm is 10 times
more precise, but 5.0s smaller, than the previous world average3,
which is mainly inferred from H spectroscopy. It is 26 times more
accurate, but 3.1s smaller, than the accepted hydrogen-independent
value extracted from electron–proton scattering1,2. The origin of this
large discrepancy is not known.

If we assume some QED contributions in mp (equation (1)) were
wrong or missing, an additional term as large as 0.31meV would be
required to match our measurement with the CODATA value of rp.
We note that 0.31meV is 64 times the claimed uncertainty of equation
(1).

TheCODATAdeterminationof rp canbe seen in a simplifiedpicture
as adjusting the input parameters rp and R‘ (the Rydberg constant) to
match theQED calculations8 to themeasured transition frequencies4–7

in H: 1S–2S on the one hand, and 2S{n‘ n‘~2P,4,6,8S=D,12Dð Þ on
the other.

The 1S–2S transition in H has been measured3–5 to 34Hz, that is,
1.43 10214 relative accuracy. Only an error of about 1,700 times the
quoted experimental uncertainty could account for our observed dis-
crepancy. The 2S{n‘ transitions have been measured to accuracies
between 1/100 (2S–8D) (refs 6, 7) and 1/10,000 (2S1/2–2P1/2 Lamb
shift31) of the respective line widths. In principle, such an accuracy
couldmake these data subject to unknown systematic shifts.We note,
however, that all of the (2S{n‘) measurements (for a list, see, for
example, table XII in ref. 3) suggest a larger proton charge radius.
Finally, the origin of the discrepancy with the H data could originate
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muonic hydrogen Lamb shift measurement

Pohl et al. (CREMA collaboration), Nature 466, 213 (2010)

measured frequency of 
2S-2P transition in muonic H 

new experimental capabilities: surprises and new insight ?



atoms formed. Themeasurement times varied between 3 and 13 h per
laser wavelength. The 75-ns-long laser time window, in which the
laser induced Ka events are expected, is indicated in Fig. 4. We have
recorded a rate of 7 events per hour in the laser timewindowwhen on
resonance. The background of about 1 event per hour originates
mainly from falsely identified muon-decay electrons and effects
related to delayed muon transfer to target walls.

Figure 5 shows the measured 2S–2P resonance curve. It is obtained
by plotting the number of Ka events recorded in the laser timewindow,
normalized to thenumber of events in thepromptpeak, as a functionof
the laser frequency. In total, we have measured 550 events in the res-
onance, where we expect 155 background events. The fit to the data is a
Lorentzian resonance line on top of a flat background. All four para-
meters (Lorentzian amplitude, position and width, as well as back-
ground amplitude) were varied freely. A maximum likelihood fit
using CERN’s ROOT analysis tool accounted for the statistics at each
laser wavelength. Our statistical uncertainties are the 1s confidence
intervals.

Weobtain a centroid position of 49,881.88(70)GHz, and awidth of
18.0(2.2)GHz, where the given uncertainties are the 1 s.d. statistical
uncertainties. The width compares well with the value of 20(1)GHz
expected from the laser bandwidth and Doppler- and power-broad-
ening of the natural line width of 18.6GHz. The resulting background
amplitude agrees with the one obtained by a fit to data recorded
without laser (not shown). We obtain a value of x25 28.1 for 28
degrees of freedom (d.f.). A fit of a flat line, assuming no resonance,
gives x25 283 for 31 d.f., making this resonance line 16s significant.

The systematic uncertainty of our measurement is 300MHz. It
originates exclusively from our laser wavelength calibration proced-
ure. We have calibrated our line position in 21 measurements of 5
different water vapour absorption lines in the rangel5 5.49–6.01mm.
The positions of these water lines are known28 to an absolute precision
of 1MHz and are tabulated in the HITRAN database29. The measured
relative spacingbetween the 5 lines agreeswith thepublishedones.One
suchmeasurement of awater vapour absorption line is shown in Fig. 5.
Our quoted uncertainty of 300MHz comes from pulse to pulse fluc-
tuations and a broadening effect occurring in the Raman process. The
FSRof the reference Fabry–Perot cavity does not contribute, as the FSR
is known better than 3 kHz and the whole scanned range is within 70
FSR of thewater line. Other systematic correctionswe have considered
are Zeeman shift in the 5T field (,30MHz), a.c. and d.c. Stark shifts
(,1MHz), Doppler shift (,1MHz) and pressure shift (,2MHz).
Molecular effects do not influence our resonance position because
the formed muonic molecules ppm1 are known to de-excite quickly30

and do not contribute to our observed signal. Also, the width of our
resonance line agrees with the expectedwidth, whereasmolecular lines
would be wider.

The centroid position of the 2SF~1
1=2 {2PF~2

3=2 transition is
49,881.88(76)GHz, where the uncertainty is the quadratic sum of
the statistical (0.70GHz) and the systematic (0.30GHz) uncertainties.
This frequency corresponds to an energy of DẼ5 206.2949(32)meV.
From equation (1), we deduce an r.m.s. proton charge radius of
rp5 0.84184(36)(56) fm, where the first and second uncertainties ori-
ginate respectively from the experimental uncertainty of 0.76GHzand
the uncertainty in the first term in equation (1). Theory, and here
mainly the proton polarizability term, gives the dominant contri-
bution to our total relative uncertainty of 83 1024. Our experimental
precision would suffice to deduce rp to 43 1024.

This new value of the proton radius rp5 0.84184(67) fm is 10 times
more precise, but 5.0s smaller, than the previous world average3,
which is mainly inferred from H spectroscopy. It is 26 times more
accurate, but 3.1s smaller, than the accepted hydrogen-independent
value extracted from electron–proton scattering1,2. The origin of this
large discrepancy is not known.

If we assume some QED contributions in mp (equation (1)) were
wrong or missing, an additional term as large as 0.31meV would be
required to match our measurement with the CODATA value of rp.
We note that 0.31meV is 64 times the claimed uncertainty of equation
(1).

TheCODATAdeterminationof rp canbe seen in a simplifiedpicture
as adjusting the input parameters rp and R‘ (the Rydberg constant) to
match theQED calculations8 to themeasured transition frequencies4–7

in H: 1S–2S on the one hand, and 2S{n‘ n‘~2P,4,6,8S=D,12Dð Þ on
the other.

The 1S–2S transition in H has been measured3–5 to 34Hz, that is,
1.43 10214 relative accuracy. Only an error of about 1,700 times the
quoted experimental uncertainty could account for our observed dis-
crepancy. The 2S{n‘ transitions have been measured to accuracies
between 1/100 (2S–8D) (refs 6, 7) and 1/10,000 (2S1/2–2P1/2 Lamb
shift31) of the respective line widths. In principle, such an accuracy
couldmake these data subject to unknown systematic shifts.We note,
however, that all of the (2S{n‘) measurements (for a list, see, for
example, table XII in ref. 3) suggest a larger proton charge radius.
Finally, the origin of the discrepancy with the H data could originate
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muonic hydrogen Lamb shift measurement

Pohl et al. (CREMA collaboration), Nature 466, 213 (2010)

measured frequency of 
2S-2P transition in muonic H 

new experimental capabilities: surprises and new insight ?

expectation from 
e-p scattering

expectation from 
(electronic) hydrogen
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proton radius[fm]

summary of electron- and muon- based measurements
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spectroscopy
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status of some theory issues
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electron-proton scattering: theory issues

radius is defined as slope of form factor

i) what are the constraints on nonlinearities?

ii) are radiative corrections controlled at the sub percent level?

radiative corrections impact radius extraction and can be 
large (~30%)



recall scattering from extended classical charge distribution: 

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ

0

bosonlinesisimplied.

chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,
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TherenormalizationconstantZ
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theelectroweaksymmetricLagrangian(2)and
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for the relativistic, QM, case, define 
radius as slope of form factor
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38 (up to radiative corrections)

i) what are the constraints on nonlinearities?



Radius extraction requires data over a Q2 range where a simple 
Taylor expansion of the form factor is invalid

maximum Q2 [GeV2]

ra
di

us
 e

rr
or

[f
m

]
[sensitivity studies based on bounded z expansion fit]

39

data of Bernauer et al. (A1 collaboration), PRL 105, 242001 (2010)
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Taylor expansion of the form factor is invalid

maximum Q2 [GeV2]

ra
di

us
 e

rr
or

[f
m

]

size of rE 

anomaly 
(hydrogen)

convergence radius for 
simple Taylor expansion

[sensitivity studies based on bounded z expansion fit]

39

Cut used for radius extraction

data of Bernauer et al. (A1 collaboration), PRL 105, 242001 (2010)



40

coefficients in rapidly 
convergent expansion encode 
nonperturbative QCD

tcut

F (q2) =
X

k

ak[z(q
2)]k

experimental 
kinematic region

That’s ok: underlying QCD tells us that Taylor expansion 
of form factor in appropriate variable is convergent

q2

particle thresholds

z

5

where ni is the number of events in the i-th bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the -2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and there
are similar sized discrepancies in the central values. A
similar exercise was performed in Refs. [64, 73, 74], and
similar results were obtained. Having reproduced the
original analyses to the extent possible, we will proceed
with the updated constants as in the final column of Ta-
ble I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z
1

t
cut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where t
cut

= 9m2

⇡ represents the leading three-pion
threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [30],

z(q2, t
cut

, t
0

) =

p
t
cut

� q2 �
p
t
cut

� t
0p

t
cut

� q2 +
p
t
cut

� t
0

, (12)

where t
0

, with �1 < t
0

< t
cut

, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

k
maxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t

0

. toptimal

0

is defined in Eq. (14).

Q2

max

[GeV2] t
0

|z|
max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal

0

(3.0GeV2) = �0.57GeV2 0.35

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote
by toptimal

0

(Q2

max

) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max

 q2  0. Explicitly,

toptimal

0

(Q2) = t
cut

(1�
p

1 +Q2

max

/t
cut

) . (14)

Table III displays |z|
max

for several choices of Q2

max

and
t
0

.
The choice of t

0

can be optimized for various applica-
tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄
0

= toptimal

0

(1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|

max

= 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [75], FA ⇠ Q�4, implies the series of four sum
rules [34]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = k

max

� 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [34] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [30] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fall-o↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)
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Reanalysis of scattering data reveals strong influence of 
shape assumptions

Errors larger, but discrepancy remains
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muonic hydrogen spectroscopy: theory issues

muonic atoms more sensitive to radius, but also more 
sensitive to other proton structure

- are subleading proton structure effects under control? 
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Figure 1: Virtual radiative corrections through first order in ↵. for point particle (top particle line)
scattering on a composite particle (bottom particle line). Wavefunction renormalization contributions
are not shown explicitly.

(a) (b)

Figure 2: First order real radiative corrections for electron scattering on proton. In (a) crosses denote
possible attachments of the radiated photon.

positivity of the spectral function in the dispersive representations of the form factors, a property
which is not satisfied. 7

4 Radiative corrections

We present fits employing variations of a default radiative correction model. Possible deficiencies
in this model are treated at the same level as experimental systematic errors. Let us review the
description of the cross section including first order radiative corrections. The relevant amplitudes
are depicted in Figs. 1 and 2.

7That it cannot be satisfied is readily seen from the asymptotic behavior Q�2 for the form factor represented by
such a spectral function.
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two-photon exchange → “background”
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Optical theorem for two-photon exchange in muonic hydrogen 

If a dispersion relation is valid, contribution completely determined by 
measurable quantities in electron-proton scattering.   But:

new hadronic function
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10 times larger 
error bar? more?

RJH, Paz, PRL 2011
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Figure 9: Two-photon contribution to the Lamb shift in muonic hydrogen, adjusted to common
proton elastic form factors (see text). Black circles denote previous work, blue square denotes
the present work. The red triangle is the summary of Ref. [4] used in the CREMA muonic
hydrogen extraction of rp
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used in original CREMA analysis

just NRQED+OPE

plus chiral P.T. constraint

previous chiral P.T. estimates}
•  TPE remains dominant uncertainty in mu-H Lamb shift, 
rEp, Rydberg (most precise fundamental constant).  But not 
a solution to proton radius puzzle

Birse, McGovern (2012)

from RJH, Paz (2016)



46

status and prospects
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Figure 13. Status of the proton radius puzzle circa 2016, with prospects for new data. The upper pane is
reproduced from Fig. 1. The middle pane shows updated results. The cyan points give updated fits to electron
scattering data using z expansion (final two points in Fig. 4, from Ref. [15]. The black point represents the 2014
CODATA [1] combination of hydrogen and electron-proton scattering determinations. The red point is from
the 2016 CREMA muonic deuterium Lamb shift measurement using the regular hydrogen-deuterium isotope
shift [73]. The bottom pane shows expected sensitivities of anticipated results in: regular hydrogen [78] (blue);
low-Q2 electron-proton scattering [90] (cyan); and muon-proton scattering [92] (magenta). See text for details.

4.5 Summary of status and prospects

Figure 13 displays the current status of the proton radius puzzle. Compared to Fig. 1, the muonic
hydrogen error bar has been increased to reflect updates and a revised treatment of TPE in Ref. [71],
and the new muonic deuterium data point has been included. The electron scattering results reflect
the treatment of form factor nonlinearities and more conservative systematic errors from Ref. [15]. In
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New physics under our noses?
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2

max

. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t

0

= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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} discrepancy with 
muonic hydrogen

A new particle would violate the assumed analytic structure, and 
generate momentum-dependent effect 
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tcutexperimental 
kinematic region

q2

particle thresholds

z

A new particle would violate the assumed analytic structure, and 
generate momentum-dependent effect 

New physics under our noses?



51

→( )
L = LSM +X

� e2

Q2
F (Q2) ! � e2

Q2
F (Q2)⌥ g2

Q2 +m2
V

one possibility: X = dark photon

• depending on mass, consistent with reH ~ rμH < re-p

• especially interesting to see new eH results
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22

Thermal LDM: Mediator Physics Plays a 
Central Role

Accelerator experiments leading the way exploring the possible 
mediator physics!  This is a crucial part of the physics!
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summary



• proton radius puzzle, neutrinos, dark matter:  important particle, 
nuclear, atomic overlap

• impossible not to cross boundaries 

• Operator product expansion: Heavy WIMP direct detection ↔ 

two-photon effects in Lamb shifts

• Sudakov resummation: Heavy WIMP annihilation ↔ e-p, ν-N 

scattering

• need for precision in current and next generation experiments

• opportunity to develop and exploit modern tools and technology
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Dark matter - Standard Model interactions 

L =
1

⇤n
ODM ⇥OSM

d Fermion

3  ̄
⇥

1 , i�
5

, �µ�
5

, {�µ , �µ⌫}⇤ 
4  ̄

⇥{1 , i�
5

, �µ�
5

} , �µ , �µ⌫
⇤

i@⇢� 

d Scalar

2 |�|2

3 {�⇤i@µ��}

d Heavy particle

3 �̄v

⇥

1 , {�µ⌫
? }⇤�v

4 �̄v

⇥{1} , �µ⌫
?

⇤

i@⇢?��v

Table 1: Gauge-invariant DM operator building blocks of indicated dimension for a relativistic
fermion and scalar, and a heavy-particle fermion. For the relativistic case, building blocks within
curly brackets, { }, vanish for self-conjugate fields such as a Majorana fermion or a real scalar.
For the heavy-particle case, building blocks within curly brackets, { }, are odd under the parity in
Eq. (3). The list for a heavy-particle scalar (of mass dimension 3/2) is obtained by omitting building
blocks with the spin structure �µ⌫? above.

and a four-component spinor  . We consider both the case where there is a conserved global U(1)
DM

DM particle number, i.e., a Dirac fermion or complex scalar, and the case where the DM particle
is self-conjugate and odd under an exact Z

2

symmetry, i.e., a Majorana fermion ( =  c) or a real
scalar (� = �⇤). As for the SM building blocks, we ignore total derivatives of DM bilinears, which
must be considered when constructing lagrangian interactions.

In the regime where the DM has mass comparable to or heavier than the electroweak scale
particles, M & m

W

, the scale separation M � m
b

allows us to employ the heavy-particle building
blocks listed in the final column of Table 1. We list the building blocks appropriate for a spin 1/2
or spin 0 heavy particle; e↵ective theories for higher-spin particles may be similarly constructed.
Lorentz transformations of the heavy particle field are governed by the little group for massive
particles defined by the time-like unit vector vµ. A heavy fermion has two degrees of freedom which
may be embedded in a Dirac spinor, �

v

, with constraint v/�
v

= �
v

(see, e.g., Ref. [31] and Sec. 2 of
Ref. [4] for more details). In writing the heavy-particle building blocks in Table 1 we assume field
redefinitions that eliminate operators with timelike derivatives v · D acting on �

v

, and hence only
perpendicular components of derivatives, @µ?, appear. In a standard notation we define spacelike
(with respect to the timelike unit vector vµ) “perpendicular” components using gµ⌫? ⌘ gµ⌫ � vµv⌫ .

In particular, we have @µ? ⌘ @
↵

g↵µ? = @µ � vµv · @ and �µ⌫? ⌘ �
↵�

g↵µ? g�⌫? .
For lagrangians containing heavy fields describing self-conjugate particles such as Majorana

fermions or real scalars, we may furthermore impose invariance under the self-conjugate parity,
enforced formally by the simultaneous operations [32, 13]2

vµ ! �vµ , �
v

! �c

v

= C�⇤
v

. (3)

Equivalently we may impose CPT invariance, applying the usual CPT transformations for relativistic
fields, but employing a modified version of CPT for the heavy-particle, under which 3

C : �(t,x) ! ⇠ �(t,x) , P : �(t,x) ! ⌘ �(t,�x) , T : �(t,x) ! ⇣ S �(�t,x) , (4)

where S = i�
2

for fermions and S = 1 for scalars [31]. In this formulation of the self-conjugate parity,
the action of discrete symmetries transforms fields, but leaves the reference vector vµ unchanged.
Hence, it may be readily employed even when the reference vector is fixed, e.g., to vµ = (1,0) in the
rest frame of the heavy particle.

2Here C is the charge conjugation matrix acting on the spinor index of �v. It is symmetric and unitary and satisfies
C†�µC = ��⇤

µ. For the extension to arbitrary spin see Ref. [31].
3The phases ⇠, ⌘ and ⇣ under C, P and T do not a↵ect scattering observables.

4

d QCD operator basis

3 V µ
q = q̄�µq

Aµ
q = q̄�µ�

5

q

4 Tµ⌫
q = imq q̄�µ⌫�

5

q

O(0)

q = mq q̄q , O(0)

g = GA
µ⌫G

Aµ⌫

O(0)

5q = mq q̄i�5q , O(0)

5g = ✏µ⌫⇢�GA
µ⌫G

A
⇢�

O(2)µ⌫
q = 1

2

q̄
⇣

�{µiD⌫}
� � gµ⌫

4

iD/�

⌘

q , O(2)µ⌫
g = �GAµ�GA⌫

� + gµ⌫

4

(GA
↵�)

2

O(2)µ⌫
5q = 1

2

q̄�{µiD⌫}
� �

5

q

Table 2: The seven operator classes: vector
�

V
q

�

, axial-vector
�

A
q

�

, tensor
�
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q

�

, scalar
�

O(0)

q

, O(0)

g
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,

pseudoscalar
�

O(0)

5q

, O(0)

5g
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, C-even spin-2
�

O(2)

q

, O(2)

g

�

and C-odd spin-2
�

O(2)

5q

�

. Here A[µB⌫] ⌘
(AµB⌫ � A⌫Bµ)/2 and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 respectively denote antisymmetrization and
symmetrization, and the subscript q denotes an active quark flavor. The antisymmetric tensor current

T
q

and the quark pseudoscalar operator O(0)

5q

both include a conventional quark mass prefactor.

are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.

8

} complete 
QCD basis 

for d≤7
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Renormalization and matching (sample):

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then
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⌃
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where we have chosen QCD operators of definite spin,
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Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.
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Renormalization group evolution from weak scale to hadronic scales, with 
perturbative corrections at heavy quark mass thresholds

focus on the scalar case, S = 0, where the sum rule for n
f

flavors is given by the trace part as

h✓µ
µ

i = m
N

= (1� �
m

)

nf
X

q=u,d,s,...

hO(0)

q

i+ �̃

2
hO(0)

g

i . (30)

The sum rule relating matrix elements hO0(S)
i

i in a theory with n
f

+1 flavors has the analogous form.
Consistency between Eqs. (29) and (30) yields a system of equations which imposes constraints

on the matrices R(0) and M (0). In the following, we drop the superscript (0) for brevity. In the case
of scale evolution, the sum rule determines R. Starting from the general form,

R(µ, µ
h

) =

0

B

B

B

B

B

B

@

1 R
qg

. . .
...

1 R
qg

0 · · · 0 R
gg

1

C

C

C

C

C

C

A

, (31)

which follows from the scale invariance of hO(0)

q

i, the functions R
qg

and R
gg

are determined by the
system of equations derived from Eqs. (29) and (30):

2

�̃(µ)
R

gg

=
2

�̃(µ
h

)
, R

qg

� 2

�̃(µ)

⇥

1� �
m

(µ)
⇤

R
gg

= � 2

�̃(µ
h

)

⇥

1� �
m

(µ
h

)
⇤

. (32)

This yields the results given in Table 5.
In the case of heavy quark threshold matching, relations between elements of the matrix M can

be similarly derived. Consider the general form,

M(µ
Q

) =

0

B

B

B

B

@

M
qQ

M
qg

1(M
qq

�M
qq

0) + JM
qq

0
...

...

M
qQ

M
qg

M
gq

· · · M
gq

M
gQ

M
gg

1

C

C

C

C

A

, (33)

where the n
f

⇥ n
f

matrices 1 and J are respectively the identity matrix and the matrix with all
elements equal to unity. The system of equations derived from Eqs. (29) and (30) yield the following
relations

0 = �̃(nf ) � �̃(nf+1)M
gg

� 2
⇥

1� �
(nf+1)

m

⇤

(M
gQ

+ n
f

M
gq

) ,

0 = 2
n

1� �
(nf )
m

� ⇥

1� �
(nf+1)

m

⇤

(M
qQ

+M
qq

+ (n
f

� 1)M
qq

0)
o

� �̃(nf+1)M
qg

, (34)

where the superscripts on �
m

and �̃ denote the n
f

dependence, while the µ
Q

dependence is implicit.
We may further simplify the matrix (33). By dimensional analysis, the gauge invariant operator

m
q

q̄q matches onto (GA

µ⌫

)2 with power suppression, ⇠ m
q

/m
Q

, and hence M
gq

⌘ 0. Conserved global
chiral symmetries, q

L,R

! ei✏L,Rq
L,R

when m
q

! 0, imply that integrating out the heavy quark Q
in the presence of m

q

q̄q does not induce m
q

0 q̄0q0 for q0 6= q, i.e., M
qq

0 ⌘ 0.11 Finally, since the quark

11 We are free to assume here an anticommuting �5 prescription, since �5 does not enter the QCD analysis of the scalar
operators. The assumption of diagonal quark matching underlies the light quark mass decoupling analysis [48, 49]. For
an explicit comparison of decoupling relations for pseudoscalar and axial currents using di↵erent �5 prescriptions, see
[46].
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Operator Solution to matching condition
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Table 6: Heavy quark threshold matching relations for the seven operator classes. The strong
coupling in the (n

f

+ 1)-flavor theory is denoted ↵0
s

.

two-loop. For the tensor current and C-odd spin-two operator we have presented the leading log-
arithmic order solutions. The chosen renormalization prescription ensures scale invariance of the
quark pseudoscalar operators to all orders.

For most phenomenological applications we may simply evaluate the matrix elements of the C-
even spin-two operators in terms of parton distribution functions (PDFs) at the weak scale µ

h

⇠ m
W

.
This avoids the need for renormalization group analysis (apart from matching to a convenient scale to
evaluate matrix elements) and heavy-quark threshold matching conditions. Nonetheless, we include
the above results for future analyses which may require an evaluation of tensor matrix elements at
low scales, such as in considering multi-nucleon contributions to matrix elements [43, 24, 44], or in
investigating the power-suppressed mixing between scalar and tensor operators.

3.4 Heavy quark threshold matching

After evolving to the scale µ
Q

⇠ m
Q

, we integrate out the heavy quark, i.e., the bottom or charm
quark, of mass m

Q

. The coe�cients in the n
f

- and (n
f

+ 1)-flavor theories are related by matching
physical matrix elements. In terms of renormalized coe�cients and operators the matching condition
is

c0
i

hO0
i

i = c
i

hO
i

i+O(1/m
Q

) , (26)

where primed and unprimed quantities are in the (n
f

+1)- and n
f

-flavor theories, respectively.8 Let
us express the solution to the matching condition as

c
i

(µ
Q

) = M
ij

(µ
Q

)c0
j

(µ
Q

) . (27)

8For example, the matching condition for scalar operators, between physical matrix elements in the 5- and 4-flavor
theories, is given by c

(0)0
g hO(0)0

g i+P
q=u,d,s,c,b c

(0)0
q hO(0)0

q i = c
(0)
g hO(0)

g i+P
q=u,d,s,c c

(0)
q hO(0)

q i+O(1/mb) , where primed
and unprimed quantities are in the 5- and 4-flavor theories, respectively, and the scale dependence is implicit.
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masses in the n
f

and n
f

� 1 flavor theories are defined to include the induced e↵ects of the heavy
quark, we have simply M

qq

⌘ 1. These arguments imply from (33) a solution for all elements in
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and M
qQ
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Let us consider solutions for the elements of M (0) expanded in powers of ↵
s

,

M =
1
X

n=0

 

↵
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s

(µ
Q

)

⇡

!

n

M (n) , (36)

where the superscript signifies that the strong coupling constant is defined in the (n
f

+ 1)-flavor
theory. Employing this ↵

s

counting and the O(↵4

s

) results for M
gQ

and M
qQ

from Ref. [48], we may
solve the relations in Eq. (34) order by order.12 Let us work in the MS scheme, employing results for

M
gQ

and M
qQ

, as well as for the nontrivial matching condition between ↵
(nf )
s

(µ
Q

) and ↵
(nf+1)

s

(µ
Q

)
found in Ref. [48], expressed in terms of the heavy quark mass m

Q

defined in this scheme. Working
through NLO, we recover the result in Table 6. At NNLO, we find
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At NNNLO, we find
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Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
(n

f

+ 1)-flavor theory in terms of those in the n
f

-flavor theory, up to power corrections. Employing
the results for M

gQ

and M
qQ

from Ref. [48], the matrix element for the heavy quark in the (n
f

+1)-
flavor theory is given by
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N

= M
qQ

�+M
gQ

2

�̃(nf )
[1� (1� �

(nf )
m

)�]

=
1

3�
(nf )

0

(

2� 2�

)

+
↵
(nf+1)

s

(µ
Q

)

⇡

 

1

3�
(nf )

0

!

2

(

57

2
� 321�

2
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)

12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
(n
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+ 1)-flavor theory in terms of those in the n
f

-flavor theory, up to power corrections. Employing
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12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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MgQ and MqQ known through 
3 loops:

Chetyrkin et al. (1997)

New results for gluon-induced decoupling relations

Hill, Solon (2014)
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t
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/µp = 5, k
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= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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yses of Mainz and world data. To determine an opti-
mal Q
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness

1σ

Reanalysis of scattering data also reveals potential 
dependence of radius on chosen Q2 range

An unaccounted effect impacting especially large Q2 data? 
(radiative corrections: another talk. new physics: another talk) 

Revisit radiative corrections, which are enhanced at large Q2

To reconcile e-p scattering with muonic hydrogen, could: 

• consider only small Q2 data (less data ⇒ larger error)

• overrule scattering data with other data or constraints

These options could avoid, but not resolve, the puzzle from electron scattering. 
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
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through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
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} discrepancy with 
muonic hydrogen

1σ

Reanalysis of scattering data also reveals potential 
dependence of radius on chosen Q2 range

An unaccounted effect impacting especially large Q2 data? 
(radiative corrections: another talk. new physics: another talk) 

Revisit radiative corrections, which are enhanced at large Q2

To reconcile e-p scattering with muonic hydrogen, could: 

• consider only small Q2 data (less data ⇒ larger error)

• overrule scattering data with other data or constraints

These options could avoid, but not resolve, the puzzle from electron scattering. 
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- Beyer, Maisenbacher, Matveev et al. (Garching): result for 2S-4P (submitted).  
Error comparable to previous hydrogen average, central value consistent with muonic 
hydrogen (PRELIMINARY) 

- future new results anticipated from 2S-2P (York), 1S-3S (Paris), others
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• The proton radius puzzle has important implications

- dramatic shift in fundamental constants, and revising our 
theoretical understanding of many processes in atomic, 
nuclear and particle physics

- new physics? 

• Improved analysis of muonic hydrogen disfavors enhanced 
two-photon exchange contribution as explanation

• Radiative corrections reanalyzed so far do not reconcile 
electron scattering results with muonic hydrogen.  Work remains.

or 

• The puzzle is motivating many new experiments

• The puzzle has driven important theoretical developments
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4 Radiative corrections

We present fits employing variations of a default radiative correction model. Possible deficiencies
in this model are treated at the same level as experimental systematic errors. Let us review the
description of the cross section including first order radiative corrections. The relevant amplitudes
are depicted in Figs. 1 and 2.
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such a spectral function.
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Optical theorem for two-photon exchange in muonic hydrogen 

If a dispersion relation is valid, contribution completely determined by 
measurable quantities in electron-proton scattering.   But:

new hadronic function
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Two theoretical tools to analyze this new hadronic function:  

• Heavy particle effective field theory

• Operator product expansion

Adapt techniques developed for dark matter direct 
detection cross sections.

interesting saga: erratum ~40 years after publication

RJH, M.P. Solon, PRL (2014)

RJH, Paz (2016)

Collins, NPB 149, 90 (1979); erratum ibid 2017
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• Heavy particle expansion

L =  †
✓
i@t + . . .

◆
 

Determine interaction 
coefficients from measurable 
low-energy processes 

Apply the thus-determined 
Lagrangian to predict low-Q2 
expansion of our function
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Figure 7: W
1

(0, Q2) as a function of Q2. Solid black curves on the left and right are from
Eqs. (35) and (38), as explained in the text. Intermediate red curves are interpolations from
the central curves and envelopes. Left: total W

1

(0, Q2). Right: W
1

(0, Q2) after subtracting
SIFF contribution. The solid red lines show interpolations based on the same total error
on the low-Q2 behavior. The dashed red lines show interpolations based on a smaller error
corresponding to 100% uncertainty on the non-SIFF contribution (see text).

where A(Q2) is the leading power result displayed in Fig. 6, and �(Q2) denotes power correc-
tions. To investigate the impact of power-suppressed terms we take central value � = 0, and
upper and lower envelopes

�(Q2) = ±⇤2

Q2

, (39)

with hadronic scale ⇤ = 500 MeV. The LHS of Fig. 7 displays a cubic spline interpolation
of W

1

(0, Q2) taking the low-Q2 and high-Q2 inputs from NRQED and OPE. We show results
for central values, and for the interpolations based on upper and lower envelopes for the
low-Q2 and high-Q2 constraints. At low-Q2 these envelopes account for uncertainties in low-
energy constants of Eqs. (36) and (37). At high-Q2 these envelopes account for perturbative
and hadronic matrix element uncertainties in A(Q2) from Fig. 6, and for power corrections
according to Eq. (39). The intermediate region is outside of the domain of validity of either
NRQED or a chiral lagrangian at low-Q2, or OPE at high-Q2. The interpolated envelopes
illustrate the range of values that can be obtained for muonic hydrogen.

The relevant two-photon exchange contribution to muonic hydrogen may be written [2],
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where we separate T µ⌫ into three pieces, T µ⌫
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b , and T µ⌫
c , as illustrated in Fig. 3. The
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After simplification this gives the results
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The expression for c
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agrees with equation 2.14 of Ref. [19]. Coe�cients c
2f

and c
3f

were not
considered in Ref. [19].

2.3 Gluon operators

We compute c
ig

in two ways: by a direct matching calculation with onshell gluon states, and
by extracting them from a background field analysis in Fock-Schwinger gauge [24].

We begin with the direct calculation, separating T µ⌫ into three pieces, T µ⌫
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Figure 7: W
1

(0, Q2) as a function of Q2. Solid black curves on the left and right are from
Eqs. (35) and (38), as explained in the text. Intermediate red curves are interpolations from
the central curves and envelopes. Left: total W

1

(0, Q2). Right: W
1

(0, Q2) after subtracting
SIFF contribution. The solid red lines show interpolations based on the same total error
on the low-Q2 behavior. The dashed red lines show interpolations based on a smaller error
corresponding to 100% uncertainty on the non-SIFF contribution (see text).

where A(Q2) is the leading power result displayed in Fig. 6, and �(Q2) denotes power correc-
tions. To investigate the impact of power-suppressed terms we take central value � = 0, and
upper and lower envelopes

�(Q2) = ±⇤2

Q2

, (39)

with hadronic scale ⇤ = 500 MeV. The LHS of Fig. 7 displays a cubic spline interpolation
of W

1

(0, Q2) taking the low-Q2 and high-Q2 inputs from NRQED and OPE. We show results
for central values, and for the interpolations based on upper and lower envelopes for the
low-Q2 and high-Q2 constraints. At low-Q2 these envelopes account for uncertainties in low-
energy constants of Eqs. (36) and (37). At high-Q2 these envelopes account for perturbative
and hadronic matrix element uncertainties in A(Q2) from Fig. 6, and for power corrections
according to Eq. (39). The intermediate region is outside of the domain of validity of either
NRQED or a chiral lagrangian at low-Q2, or OPE at high-Q2. The interpolated envelopes
illustrate the range of values that can be obtained for muonic hydrogen.

The relevant two-photon exchange contribution to muonic hydrogen may be written [2],
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Figure 9: W
1

(0, Q2), after subtracting Q2 = 0 limit and scaling by the kinematic factor k(Q)
in Eq. (41), as a function of Q. The contribution to the muonic hydrogen Lamb shift is
proportional to the area under the curve, cf. Eq. (40). Left: direct calculation from total
W

1

(0, Q2). Right: calculation using W
1

(0, Q2) after subtraction of W
1

(0, Q2)SIFF.

for this function has been correctly calculated previously. We calculated it here, and employed
it to constrain the two-photon exchange contribution to the muonic-hydrogen Lamb shift.

The evaluation of W
1

(0, Q2) by OPE was considered long ago by Collins [7]. This refer-
ence considered only the spin-0 contribution, and the expression obtained there is missing a
factor involving the quark electromagnetic charges. Correcting this factor reduces the spin-0
contribution by an order of magnitude, within the approximations that were employed [cf. the
red line in Fig. 4 versus Eq. (33)]. Corrections to the nf = 3 approximation, and subleading
QCD corrections further impact this spin-0 result, changing the sign of the central value (cf.
Fig. 4, LHS). Even more importantly, the spin-2 contribution was not considered in Ref. [7],

Table 3: Two-photon proton structure corrections to the 2P � 2S Lamb shift in muonic
hydrogen, in meV.

Contribution Fig. 9a Fig. 9b, solid Fig. 9b, dashed

�Eproton

µH �0.0163 �0.0163 �0.0163

�E
W1(0,Q2

)

µH 0.031(10) 0.0347 � 0.002(8) 0.0347 � 0.002(2)

�Econtinuum

µH 0.0127 0.0127 0.0127

�Etwo�� 0.027(10) 0.029(8) 0.029(2)
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Figure 10: Two-photon contribution to the Lamb shift in muonic hydrogen. Black circles
denote previous work, blue square denotes the present work.

and is found numerically to dominate the total OPE expression for W
1

(0, Q2). The application
of Ref. [7] involved electromagnetic mass corrections, for which the spin-2 contribution drops
out; furthermore in the di↵erence of proton and neutron matrix elements, the missing factor
in Ref. [7] also drops out. However, for the application to muonic hydrogen spectroscopy these
ingredients are critical, and a wide range of values for the leading OPE expression have been
employed [32, 3].

Enforcing the correct large-Q2 behavior, our results for the two-photon exchange contribu-
tion are displayed in Fig. 10. A conservative approach treats W

1

(0, Q2) in total; the uncertainty
in the low-Q2 behavior of this function translates to an error of ⇠ 0.010 meV in the muonic
hydrogen Lamb shift. A more aggressive approach assumes that the function W

1

(0, Q2) can
be computed much more precisely after subtracting a function depending only on elastic form
factors (what we have termed the SIFF contribution). This uncertainty remains the dominant
one in the muonic hydrogen Lamb shift, and for derived observables such as the proton charge
radius extracted from muonic hydrogen. Future measurements with light muonic atoms and
questions surrounding the proton radius puzzle may motivate direct computations using lattice
QCD.
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Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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The renormalization constant Z�
2

is inherited from the electroweak symmetric Lagrangian (2) and

ZW
1

, ZW
2

are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for

6Following the conventions of [77], bare Lagrangian fields and parameters are given by (W a
µ )

bare = (ZW
2 )1/2W a

µ ,

gbare2 = ZW
1 (ZW

2 )�3/2g2.
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N N



72

Many applications of operator product expansion:

μ-νμ

d u

μ-νμ

d u

[ūd]V�A
g2

@2 �m2
W

[µ̄⌫]V�A
GF [ūd]V�A[µ̄⌫]V�A + . . .

E.g.,  Fermi theory of weak interactions:

short distance coefficient local operator

}
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FIG. 6: Same as Fig. 5, but including recoil and nuclear charge corrections (i.e., two photon

exchange and proton vertex corrections).

IV. DISCUSSION

The precision of electron-proton scattering experiments has reached a level demanding

systematic analysis of subleading radiative corrections at two loop order and beyond. We

have presented the general framework that separates physical scales in the scattering process,

allowing a systematic merger of fixed order perturbation theory with large log resummation.

The quantum field theory analysis reveals implicit conventions and assumptions that

often di↵er between applications, such as between scattering and bound state problems.

The definition of the proton charge and magnetic radii in the presence of electromagnetic

radiative corrections is naturally defined in Eq. (12). A comparison to other definitions in

the literature is presented in Appendix B. The separation of soft and hard scales in two

photon exchange is similarly ambiguous in standard treatments. The common Maximon-

Tjon convention [37] implicitly takes momentum-dependent factorization scale µ2 = Q2 for

two-photon exchange, in conflict with the Q2-independent choice µ2 = M2 that is closest to

the implicit convention for vertex corrections.

The exponentiation and cancellation of infrared singularities [10] in physical processes

has often been used to motivate a simple exponentiation of first order corrections in order

22
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Comparison to previous implementations of radiative corrections, e.g. 
in A1 analysis of electron-proton scattering data

)2 (GeV2Q
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FIG. 7: Comparison of complete next to leading order resummed correction (soled black band) to

naive exponentiations using di↵erent factorization scales for the two photon exchange correction:

µ2 = M2 (dotted red line) and µ2 = Q2 (dashed blue line). See text for details.

to resum logarithmically enhanced radiative corrections at second- and higher-order in per-

turbation theory [7, 41]. This procedure fails to capture subleading logarithms, beginning

at order ↵2L3 = O(↵
1
2 ), in our counting ↵L2 = O(1), cf. Eq. (32). These large logarithms

are automatically generated in the renormalization analysis that the e↵ective theory makes

possible. The convergence of resummed perturbation theory is illustrated, for the complete

problem including proton structure and recoil, in Fig. 6. A comparison of the resummed

prediction to the naive exponentiation ansatz is displayed in Fig. 7.

Also shown in Fig. 7 is the variation due to di↵erent scale choices implicit in di↵erent two-

photon exchange corrections.8 These ansaztes di↵er at the percent level in the considered

kinematic range, and fall well outside the error band represented by the complete next-to-

leading order resummed prediction.

Special attention has been paid to the e↵ects of real emission beyond tree level. Soft-

8 For example, the so-called McKinley-Feshbach correction [42] represents the large-M limit of the hard-

coe�cient contribution to two-photon exchange, and is independent of factorization scale µ. Using this

correction [7] results in an irreducible factorization-scale uncertainty, uncanceled between matrix element

and coe�cient.

23

resummed EFT result

naive exponentiation of 1-loop, 
(μ2=Q2 in two-photon piece)

naive exponentiation of 1-loop, 
(μ2=M2 in two-photon piece)

• should be implemented directly in analysis, but doesn’t appear to 
resolve anomaly (floating normalizations)

• discrepancies at 0.5-1% compared to currently applied radiative 
correction models (cf. 0.2-0.5% systematic error budget of A1 experiment)

to
ta

l r
ad
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tiv

e 
co

rr
ec

tio
n �E = 5MeV

E = 1GeV

• model dependence in hard two-photon exchange remains
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with

had
pert
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

mHiggs(GeV)

�
sp

in
.i
n
d
ep

.

RJH, M.P. Solon, PRL (2014)

Model independent prediction for heavy WIMP scattering 

- generally, expect WIMP scattering cross section 
to depend on mass, spin, and electroweak quantum 
numbers

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧⌥

q

⇤
c(0)1q O

(0)
1q + c(2)1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)2 O(0)

2 + c(2)2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6

+ + +

= c2 + c1

⇤
+

⌅
+ . . .

Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇤�2
2(µt)][J(J +

1)/2], xh ⇤ mh/mW and xt ⇤ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)
2 (µt) = C�s(µt)

4⇤

�
1

3x2
h

+
3 + 4xt + 2x2

t

6(1 + xt)2

⇥
,

c(2)
2 (µt) = C�s(µt)

4⇤

�
� 32

9
log

µt

mW
� 4� 4(2 + 3xt)

9(1 + xt)3
log

µt

mW (1 + xt)

� 4(12x5
t � 36x4

t + 36x3
t � 12x2

t + 3xt � 2)

9(xt � 1)3
log

xt

1 + xt
� 8xt(�3 + 7x2

t )

9(x2
t � 1)3

log 2

� 48x6
t + 24x5

t � 104x4
t � 35x3

t + 20x2
t + 13xt + 18

9(x2
t � 1)2(1 + xt)

⇥
. (21)

There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge to compute the gluon operator coe⇤cients [10].
The e�ective theory subtractions indicated in Fig. 2, are e⇤ciently performed in a scheme
with massless light quarks, using dimensional regularization as infrared regulator; we have
obtained the same result using finite masses and taking the limit mq/mW ⇧ 0. Details of this
computation will be presented elsewhere. [Equation with explicit integral?]

5 RG evolution to hadronic scales

To account for large logarithms, e.g. log mW /µ0, that appear when hadronic matrix elements
are evaluated at µ0 ⌅ GeV, we employ the renormalization group evolution of the leading
power operators.
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