

Rare Physics at the Intensity Frontier

4th PIKIO Meeting, University of Kentucky

In collaboration with

Maxim Pospelov

Ryan Plestid

Yu-Dai Tsai

Gabriel Magill

Perimeter Institute for Theoretical Physics (Waterloo, Ontario) McMaster University (Hamilton, Ontario) 2017/09/16

Rare Physics

Neutrino physics driven by oscillations and search for eV sterile neutrino

A lot of money invested in new generation experiments

With planned technology, what else can neutrino beam dump experiments look for?

Rare Physics

#1 Neutrino Trident

#2 Neutrino Dipole Moments

Neutrino Trident

Neutrino Trident Standard Model

Neutrino Trident Standard Model

Has trident ever been measured?

Yes! For
$$\mu^-, \mu^+$$

CHARM-II (CERN)

 $\frac{\sigma_{\rm CCFR}}{\sigma_{\rm SM}} = 0.82 \pm 0.28$

CCFR Collaboration, PRL (1991) $\frac{\sigma_{\rm CHARM-II}}{\sigma_{\rm SM}} = 1.58 \pm 0.57$

CHARM-II Collaboration, Phys.Lett.B (1990) $\frac{\sigma_{\rm NUTEV}}{\sigma_{\rm SM}} = 0.67 \pm 0.27$

```
NuTeV Collaboration,
PRD (2000)
```

Neutrino Trident Standard Model

What about mixed flavours?

Not yet, however . . .

... should be capable!

gmagill@perimeterinstitute.ca

Neutrino	Trident	Standard Model
----------	---------	----------------

arXiv:1612.05642, PRD 2017 (GM, Plestid)

Neutrino Beam		Anti-Neutrino Beam			
Process	Coh	Diff	Process	Coh	Diff
$ u_{\mu} ightarrow u_e e^+ \mu^-$	73.98	53.15	$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{e} e^{-} \mu^{+}$	25.23	18.7
$ u_{\mu} ightarrow u_{\mu} e^+ e^-$	23.03	9.64	$ar{ u}_{\mu} ightarrow ar{ u}_{\mu} e^+ e^-$	16.45	6.79
$ u_{\mu} ightarrow u_{\mu} \mu^{+} \mu^{-}$	2.03	5.28	$ar{ u}_{\mu} ightarrow ar{ u}_{\mu} \mu^+ \mu^-$	2.16	4.3
$ u_e ightarrow u_e e^+ e^-$	0.7	0.29	$ar{ u}_e ightarrow ar{ u}_e e^+ e^-$	0.54	0.22
$ u_e ightarrow u_\mu \mu^+ e^-$	0.21	0.17	$ar{ u}_e ightarrow ar{ u}_\mu \mu^- e^+$	0.4	0.27
$ u_e ightarrow u_e \mu^+ \mu^-$	0.01	0.01	$ar{ u}_e ightarrow ar{ u}_e \mu^+ \mu^-$	0.	0.01
Total	99.96	68.54		44.78	30.29

Mixed flavour states can see large enhancements. As much as 35x bigger!

Rates for DUNE

 $\mu^{-}\mu^{+}$ channel provides best constraints on hidden Z' gauged under $L_{\mu} - L_{\tau}$

Upcoming experiments to target parameter space favoured by

$$(g-2)_{\mu}$$

arXiv:1406.2332, PRL 2014 (Altmannshofer, Gori, Pospelov, Yavin)

With a little model building, can couple Z' to light quarks: Provides explanation to $B \to K^* \mu^+ \mu^-$

arXiv:1403.1269, PRD 2014 (Altmannshofer, Gori, Pospelov, Yavin))

Rare Physics

#1 Neutrino Trident

#2 Neutrino Dipole Moments

Follow up:

~ Considered Dirac heavy neutral lepton

~ Mix with SM via magnetic dipole moment

Exotic resolution to MiniBooNE low energy oscillation anomaly
 Fairly low dimension operator and quite minimalistic: should be studied
 Implement analysis via collected data of future neutrino experiments

$$\mathcal{L}_{dim 5} \supset d_a \overline{\nu_L}_a \sigma_{\mu\nu} F^{\mu\nu} N - m \overline{N} N$$
$$\mathcal{L}_{dim 6} \supset \overline{L} \left(\overline{d}_W W^a_{\mu\nu} \tau^a + \overline{d}_B B_{\mu\nu} \right) \widetilde{H} \sigma_{\mu\nu} N_D$$

Won't be detectable in neutrino textures!

gmagill@perimeterinstitute.ca

In preparation (GM, Ryan Plestid, Maxim Pospelov, Yu-Dai Tsai)

SHIP ν_μ Limits at SHiP for muon dipole moments at the near and far detector, for various backgrounds. Also show existing NOMAD constraints.

SHIP ν_e, ν_τ Limits at SHiP for electron and tau neutrino dipole moments, at the near and far detectors. We consider 10 background events.

magillgw@mcmaster.ca

gmagill@perimeterinstitute.ca

In preparation (GM, Ryan Plestid, Maxim Pospelov, Yu-Dai Tsai)

Colliders

95% CL sensitivities at LHC and LEP. Limits are shown for the dimension 5 (photon) and dimension 6 (photon + heavy bosons) extensions.

Astrophysics

Emissivity and optical depth constraints from SN1987A. Parameter space facilitating SN conversion to neutron star. Constant HNL lifetimes (for BBN).

Neutrino Dipole

In preparation (GM, Ryan Plestid, Maxim Pospelov, Yu-Dai Tsai)

~ Produced at SHiP via Coherent, Diffractive, DIS, Meson Decay ~ ν_{τ} factory implies leading constraints on d_{τ} (see backup) ~ Requires dedicated study to single photon backgrounds!

gmagill@perimeterinstitute.ca

Conclusion

~ Very interesting SM and BSM physics at upcoming neutrino experiments: SBNB, SHiP, DUNE near detector

~ Experiments well suited to search for mixed flavour $\ell^+\ell^-$ and single photon signals

~ Neutrino trident production and neutrino dipole moments important in the search for new physics

Backup Slides

Motivation

Unanswered questions about neutrinos

They have mass

- ~ How is the mass generated?
- ~ Majorana or Dirac?
- ~ Mass hierarchy?

- $\nu_{ au}$ DONUT: 9 candidates OPERA: 4 from oscillations
- $\overline{
 u}_{ au}$ Never observed!

PMNS Matrix

~ CP Violating angle

$$\delta_{CP}^{NH}(\pm 1\sigma) = 202^{\circ} - 312^{\circ}$$

$$\delta^{NH}_{CP}(\pm 3\sigma) = 0^{\circ} - 360^{\circ}_{\rm nu-fit.org}$$

Oscillation Anomalies

~ LSND; MiniBooNE:

New Experiments

Neutrino Trident

arXiv:1612.05642, PRD 2017 (GM, Plestid)

ν Process	$\overline{\nu}$ Process	V_{ijk}	A_{ijk}	Mediator
$ u_e ightarrow u_e e^+ e^-$	$\overline{ u}_e ightarrow \overline{ u}_e e^+ e^-$	$\frac{1}{2} + 2\sin^2\theta_w$	$\frac{1}{2}$	W,Z
$ u_{\mu} ightarrow u_{\mu} \mu^{+} \mu^{-}$	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu} \mu^{+} \mu^{-}$	$\frac{1}{2} + 2\sin^2 \theta_w$	$\frac{1}{2}$	W,Z
$ u_e ightarrow u_\mu \mu^+ e^-$	$\overline{ u}_e ightarrow \overline{ u}_\mu e^+ \mu^-$	1	1	W
$ u_{\mu} ightarrow u_e e^+ \mu^-$	$\overline{ u}_{\mu} ightarrow \overline{ u}_{e} \mu^{+} e^{-}$	1	1	W
$ u_e ightarrow u_e \mu^+ \mu^-$	$\overline{\nu}_e ightarrow \overline{\nu}_e \mu^+ \mu^-$	$-\frac{1}{2}+2\sin^2\theta_w$	$-\frac{1}{2}$	\mathbf{Z}
$ u_{\mu} ightarrow u_{\mu} e^+ e^-$	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu} e^+ e^-$	$-rac{1}{2}+2\sin^2 heta_w$	$-\frac{1}{2}$	\mathbf{Z}
$ u_{\mu} ightarrow u_{\mu} au^+ au^-$	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu} au^{-} au^{+}$	$-\frac{1}{2}+2\sin^2\theta_w$	$-\frac{1}{2}$	\mathbf{Z}
$ u_{\mu} ightarrow u_{ au} \mu^- au^+$	$\overline{\nu}_{\mu} \to \overline{\nu}_{\tau} \mu^+ \tau^-$	1	1	W
$ u_{ au} ightarrow u_{\mu} au^{-} \mu^{+}$	$\overline{ u}_{ au} ightarrow \overline{ u}_{\mu} au^+ \mu^-$	1	1	W
$ u_{ au} ightarrow u_{ au} \mu^+ \mu^-$	$\overline{\nu}_{ au} ightarrow \overline{\nu}_{ au} \mu^- \mu^+$	$-\frac{1}{2}+2\sin^2\theta_w$	$-\frac{1}{2}$	\mathbf{Z}
$ u_{ au} ightarrow u_{ au} e^+ e^-$	$\overline{ u}_{ au} ightarrow \overline{ u}_{ au} e^- e^+$	$-rac{1}{2}+2\sin^2 heta_w$	$-\frac{1}{2}$	\mathbf{Z}

TABLE I: Modified vector and axial coupling constants for different combinations of incident neutrino flavours and final states

Preliminary Results: Background estimates subject to change!

Past Fermilab

HNL limits using MiniBooNE. In light of anomaly, 3 background options. Preferred regions explaining MiniBooNE and LSND anomalies.

Future Fermilab

Projected sensitivities at Fermilab's upcoming short-baseline program. Backgrounds are calculated based on expected lifetime single photons.

 $\mu^{-}\mu^{+}$ channel provides best constraints on hidden Z' gauged under $L_{\mu} - L_{\tau}$

Upcoming experiments to target parameter space favoured by

$$(g-2)_{\mu}$$

arXiv:1406.2332, PRL 2014 (Altmannshofer, Gori, Pospelov, Yavin)

With a little model building, can couple Z' to light quarks: Provides explanation to $B \to K^* \mu^+ \mu^-$

Z→II.vv Z→II.vv 0.3 g BRITHINNYSTIC 0.1 B_s mixing 10^{2} 3×10² 10^{3} 30 3 10 $m_{Z'}$ (GeV)

arXiv:1403.1269, PRD 2014 (Altmannshofer, Gori, Pospelov, Yavin))