Testing Lorentz Symmetry with an Electron-Ion Collider

Nathan Sherrill

Indiana University (IU) Indiana University Center for Spacetime Symmetries (IUCSS) Joint Physics Analysis Center (JPAC)

nlsherri@indiana.edu

4th PIKIO Meeting: September 16th, 2017

In collaboration with Enrico Lunghi (IU)

Outline

Introduction and motivation

- Some basic notions of Lorentz violation
- The Standard-Model Extension (SME)

Quark-sector application: Deep-inelastic e-p scattering (DIS)

- Setup
- Cross-section
- Sun-centered frame and rotations

3 Previous studies and impact of an EIC

- HERA analysis
- Prospects at the EIC and (preliminary!) results
- Wrap-up

Basic ideas

• Consider the following:

- An observer transformation is simply a change of coordinates
- The system is unchanged under the particle transformation we say the system possesses *rotation symmetry*

Nathan Sherrill (IU/IUCSS/JPAC)

• Let's now add a background \vec{B} -field that permeates all of space:

- Performing a particle transformation now produces a physical effect
- This is what we mean by rotation violation
- The same ideas apply to *Lorentz violation* (rotations are a type of Lorentz transformation)

The Standard-Model Extension (SME)

 The most general effective field theory characterizing Lorentz and CPT violation is the *framework* known as the SME^{1,2}

$$\mathcal{L}_{SME} = \mathcal{L}_{Gravity} + \mathcal{L}_{SM} + \mathcal{L}_{LV}$$

• The terms \mathcal{L}_{LV} contain all possible terms that break Lorentz symmetry

For example: $\mathcal{L}_{LV}^{QED} \supset a_{\mu}\bar{\psi}\gamma^{\mu}\psi, \ c_{\mu\nu}\bar{\psi}\gamma^{\mu}\overleftrightarrow{D}^{\nu}\psi$

- Important point: coefficients a_μ, c_{μν}, etc. transform as 4-vectors/tensors under observer transformations but as scalars under particle transformations
- Some terms in the SME also violate CPT symmetry
- Since CPT violation implies Lorentz violation³ the SME generally <u>characterizes this effect as well</u>

¹D. Colladay & V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

- ²V. A. Kostelecký, PRD 69, 105009 (2004)
- ³O.W. Greenberg, PRL 89, 231602 (2002)

Nathan Sherrill (IU/IUCSS/JPAC)

Outline

Introduction and motivation

- Some basic notions of Lorentz violation
- The Standard-Model Extension (SME)

Quark-sector application: Deep-inelastic *e-p* scattering (DIS)

- Setup
- Cross-section
- Sun-centered frame and rotations
- Previous studies and impact of an EIC
 - HERA analysis
 - Prospects at the EIC and (preliminary!) results
 - Wrap-up

- At zeroth order in the strong interaction quarks dominantly interact electromagnetically with the electron
- There are many possible terms to consider but we focus solely on one class of spin-independent CPT-even contributions:⁴

$$\mathcal{L} = \sum_{f=u,d} (g^{\mu\nu} + c_f^{\mu\nu}) \bar{\psi}_f \left(\frac{1}{2} i \gamma_\mu \overleftrightarrow{\partial}_\nu - q_f \gamma_\mu A_\nu\right) \psi_f$$

• Equivalent to $\gamma_{\mu} \rightarrow \gamma_{\mu} + c_{\mu\nu}\gamma^{\nu}$ for f = u, d only (dominant proton flavor content)

⁴V. A. Kostelecký, E. Lunghi, A. Vieira, PLB 729, 272-280, 2017

Nathan Sherrill (IU/IUCSS/JPAC)

- The observable of interest is the differential cross-section $d\sigma$
- Schematically:

$$d\sigma \sim rac{|\mathcal{M}|^2}{F} dQ$$

 $\bullet\,$ Effects of LV are considered on the amplitude ${\cal M}$

$$\begin{split} i\mathcal{M} &= (-ie)\bar{u}(k')\gamma_{\mu}u(k)\frac{-i}{q^{2}}(ie)\int d^{4}xe^{iq\cdot x}\left\langle X\right|J^{\mu}(x)\left|P\right\rangle\\ J^{\mu}(x) &= q_{f}\bar{\psi}_{f}(x)\Gamma_{f}^{\mu}\psi_{f}(x)\\ \Gamma_{f}^{\mu} &= \gamma^{\mu} + c_{f}^{\mu\nu}\gamma_{\nu} \end{split}$$

• Using the optical theorem the hadronic vertex is related to the forward Compton-amplitude $W^{\mu\nu}$ which we evaluate using the parton model

$$W^{\mu\nu} \simeq i \int d^4 x e^{iq \cdot x} \int_0^1 d\xi \sum_{f=u,d} \frac{f_f(\xi)}{\xi} \langle \xi P | T\{J^{\mu}(x)J^{\nu}(0)\} | \xi P \rangle$$

• The spin-averaged differential cross-section is

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}x\mathrm{d}y\mathrm{d}\phi} = \frac{\alpha^2 y}{2\pi q^4} L^{\mu\nu} \mathrm{Im}[W_{\mu\nu}]$$

- In the presence of LV there is a non-trivial dependence on the azimuthal (final state electron) scattering angle ϕ
- \bullet Averaging over ϕ enables us to split up the cross-section

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}x\mathrm{d}y}\bigg|_{SME} = \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}x\mathrm{d}y}\bigg|_{SM} + \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}x\mathrm{d}y}\bigg|_{LV}$$

with

$$\left. rac{{\mathrm d}^2 \sigma}{{\mathrm d}x {\mathrm d}y}
ight|_{LV} \propto c_f^{\mu
u} eta_{\mu
u}(p,q,x,y)_f$$

Sun-centered frame and rotations

- The standard choice of frame is the Sun-centered celestial-equatorial frame^{5,6}
- This frame is approximately inertial over the duration of most experiments

• Coefficients for LV are approximately constant in this frame

 $^5\text{V.A.}$ Kostelecký and M. Mewes, Phys. Rev. D 66, 056005 (2002)

⁶Q. Bailey and V.A. Kostelecký, Phys. Rev. D 74, 045001 (2006)

Nathan Sherrill (IU/IUCSS/JPAC)

• For laboratory measurements the rotation of the Earth induces a sidereal time-dependence in $d\sigma$

- To compare with experimental data, we must therefore perform a frame rotation
- Rotated coefficients from Sun-centered frame to lab frame are

$$c_{f,lab}^{\mu\nu} = \begin{cases} c_{f,sun}^{kl} R_{ik} R_{jl}, & \mu, \nu = i, j \in \{1, 2, 3\} \\ c_{f,sun}^{0k} R_{ik}, & \mu, \nu = 0, i \end{cases}$$

Outline

Introduction and motivation

- Some basic notions of Lorentz violation
- The Standard-Model Extension (SME)

2 Quark-sector application: Deep-inelastic e-p scattering (DIS)

- Setup
- Cross-section
- Sun-centered frame and rotations

Previous studies and impact of an EIC

- HERA analysis
- Prospects at the EIC and (preliminary!) results
- Wrap-up

HERA analysis

• The first (estimated) constraints on the sidereal time-dependent coefficients of $c_f^{\mu\nu}$ were recently determined⁷ from data taken at HERA⁸

Coefficient	Individual	Combined	
$ c_u^{TX} $	$< 4 \times 10^{-5}$	$< 1 \times 10^{-5}$	
$ c_u^{TY} $	$< 4 \times 10^{-5}$	$< 1 \times 10^{-5}$	
$ c_u^{XZ} $	$< 4 \times 10^{-5}$	$< 5 \times 10^{-6}$	
$ c_u^{YZ} $	$< 4 \times 10^{-5}$	$< 5 \times 10^{-6}$	
$ c_u^{XY} $	$< 4 \times 10^{-5}$	$< 3 \times 10^{-6}$	
$ c_u^{XX} - c_u^{YY} $	$< 1 \times 10^{-5}$	$<8\times10^{-6}$	
$ c_d^{TX} $	$< 3 \times 10^{-4}$	$< 1 \times 10^{-4}$	
$ c_d^{TY} $	$< 3 \times 10^{-4}$	$< 1 \times 10^{-4}$	
$ c_d^{XZ} $	$< 4 \times 10^{-5}$	$< 2 \times 10^{-5}$	
$ c_d^{YZ} $	$< 4 \times 10^{-5}$	$< 2 \times 10^{-5}$	
$ c_d^{XY} $	$< 2 \times 10^{-5}$	$< 1 \times 10^{-5}$	
$ c_d^{XX} - c_d^{YY} $	$< 5 imes 10^{-5}$	$< 3 \times 10^{-5}$	

Time-independent contributions to dσ_{LV} were not constrained in this analysis

⁷V. A. Kostelecký, E. Lunghi, A. Vieira, PLB 729, 272-280, 2017

⁸H1 and ZEUS Collaboration, Eur. Phys. J. C (2015) 75:580

Nathan Sherrill (IU/IUCSS/JPAC)

Prospects at EIC and (preliminary!) results

• JLab EIC (JLEIC) proposed configuration:

- Simulated reduced cross-section σ_r data of inclusive *e-p* DIS have been provided⁹ for with ranges of x and Q^2 characteristic of the JLEIC design parameters
- The data include values of $x \in [0.009, 0.9]$ and $Q^2 \in [2.5, 631]$ GeV² along with statistical and systematic uncertainties
- Detector electron beam energy is fixed at $E_e = 10$ GeV whereas we have datasets with the proton beam energy set to $E_p = 20,60,80$, and 100 GeV
- The general outline of the extraction of bounds on the coefficients is as follows:

-We integrate the LV part of the cross-section into 4 bins of sidereal time

-1000 randomized, Gaussian-distributed pseudo-experiments are generated that produce $\sigma_{r,ijk}^{exp.}$ at each (x, Q^2, Δ) value *i*, pseudo-experiment *j*, and bin *k*

⁹Data generated by A. Accardi (JLab/Hampton U.) and Y. Furletova (JLab)

- The 95% confidence level constraints on the magnitudes of each sidereal time-dependent coefficient are found by minimizing the χ^2 :

$$\chi^{2}[c_{f}^{\mu\nu}]_{i,j} = \sum_{k=1}^{nbins} \frac{\left[\sigma_{r,ijk}^{exp.} - \sigma_{r,ik}^{SME}(c_{f}^{\mu\nu})\right]^{2}}{\Delta_{i}^{2}}$$

• The JEIC colatitude is $\chi \approx 52.9^{\circ}$ and there are two detectors with the following directions North of East:

Orientation 1: $\psi \approx 47.6^{\circ}$ Orientation 2: $\psi \approx -35.0^{\circ}$

• Table 1. and Table 2. on the following pages summarize our best estimates

	c_u^{TX}			c_u^{TY}			c_u^{XZ}
$E_p(\text{GeV})$	$Constraint \times 10^5$]	$E_p(\text{GeV})$	$Constraint \times 10^5$	11	$E_p(\text{GeV})$	$Constraint \times 10^5$
20	7.89(3.38)	1	20	7.91(3.39)	1	20	13.9(5.95)
60	3.72(1.79)	1	60	3.73(1.80)	1	60	6.41(3.08)
80	1.04(0.97)		80	1.06(0.96)		80	1.78(1.65)
100	0.86(0.68)		100	0.85(0.67)	1	100	1.47(1.16)

TABLE 1. Orientation I - Un(correlated) Constraints

 c_u^{YZ}

 c_u^{XY}

$ c_u^{XX} $	$-c_u^{YY}$
--------------	-------------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E_p(\text{GeV})$	$Constraint \times 10^5$	$E_p(\text{GeV})$	Constraint×10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	13.9(5.97)	20	50.1(22.5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	6.43(3.10)	60	23.7(11.5)
100 $1.45(1.14)$ 100 $5.46(4.26)$	80	1.81(1.64)	80	6.78(6.13)
	100	1.45(1.14)	100	5.46(4.26)

$E_p(\text{GeV})$	$Constraint \times 10^5$
20	42.8(19.2)
60	20.2(9.81)
80	5.79(5.23)
100	4.66(3.64)

 c_d^{TX}

 c_d^{XZ}

$E_p(\text{GeV})$	$Constraint \times 10^4$
20	13.0(5.66)
60	6.35(3.06)
80	1.71(1.53)
100	1.36(1.16)

$E_p(\text{GeV})$	Constraint×10*
20	13.1(5.69)
60	6.45(3.07)
30	1.75(1.53)
100	1.37(1.15)

$E_p(\text{GeV})$	$Constraint \times 10^4$
20	22.8(9.96)
60	10.9(5.27)
80	2.92(2.61)
100	2.33(2.00)

 c_d^{YZ}

 $Constraint \times 10^4$

23.0(10.0)

11.1(5.28)

2.99(2.62)

2.35(1.96)

 $E_p(\text{GeV})$

20

60

80

100

 c_d^{XY}

 $E_p(\text{GeV})$

20

60

80

100

c_d^{XY}
Constraint×10

86.1(37.1)

41.8(19.4)

10.9(9.91)

8.67(7.21)

$E_p(\text{GeV})$	Const
20	73.5(3)
60	25 7(1

$E_p(\text{GeV})$	$Constraint \times 10^4$
20	73.5(31.7)
60	35.7(16.5)
80	9.31(8.39)
100	7.41(6.16)

 $\left|c_{d}^{XX}-c_{d}^{YY}\right|$

	c_u^{TX}		c_u^{TY}			c_u^{XZ}
$E_p(\text{GeV})$	$Constraint \times 10^5$	$E_p(\text{GeV})$	$Constraint \times 10^5$	1 [$E_p(\text{GeV})$	$Constraint \times 10^5$
20	7.18(3.04)	20	7.02(3.10)	1 [20	16.3(6.90)
60	3.47(1.66)	60	3.45(1.62)	1 [60	7.69(3.67)
80	0.98(0.87)	80	0.96(0.87)	1 [80	2.15(1.92)
100	0.78(0.61)	100	0.76(0.61)	1 [100	1.72(1.35)

TABLE 2. Orientation II - Un(correlated) Constraints

 c_u^{YZ}

 c_u^{XY}

$ c_u^{XX} $	$-c_u^{YY} $
--------------	--------------

$E_p(\text{GeV})$	$Constraint \times 10^5$	$E_p(G$	eV) Constraint $\times 10^5$
20	15.9(7.03)	20	23.9(10.3)
60	7.64(3.60)	60	11.3(5.39)
80	2.10(1.91)	80	3.16(2.84)
100	1.71(1.35)	100	2.56(2.02)

$E_p(\text{GeV})$	$Constraint \times 10^5$
20	46.5(19.9)
60	22.0(10.49)
80	6.12(5.52)
100	4.98(3.93)

 c_d^{TX}

 c_d^{TY}

 c_d^{XZ}

$E_p(\text{GeV})$	$Constraint \times 10^4$
20	11.8(5.19)
60	5.84(2.79)
80	1.58(1.41)
100	1.23(1.04)

$E_p(\text{GeV})$	$Constraint \times 10^4$
20	11.9(5.16)
60	5.90(2.78)
80	1.58(1.42)
100	1.23(1.05)

$E_p(\text{GeV})$	$Constraint \times 10^4$
20	26.8(11.8)
60	12.94(6.17)
80	3.48(3.10)
100	2.71(2.29)

 c_d^{YZ}

 c_d^{XY}

$ c_{J}^{XX} $	$-c_{J}^{YY}$
1ºd	^o d

$E_p(\text{GeV})$	$Constraint \times 10^4$	$E_p(\text{GeV})$	$Constraint \times 10^4$	ſ	E
20	26.9(11.7)	20	39.1(17.2)	ľ	2
60	13.1(6.17)	60	19.1(8.99)		6
80	3.47(3.13)	80	5.01(4.56)	ſ	8
100	2.71(2.31)	100	3.99(3.40)	ľ	1

$E_p(\text{GeV})$	$Constraint \times 10^4$
20	76.0(33.5)
60	37.2(17.5)
80	9.74(8.88)
100	7.41(6.16)

Wrap-up

- We have estimated the constraints obtainable on a particular subset of LV coefficients in the quark-sector of the SME
- This was done by analyzing simulated inclusive DIS data for the proposed JLEIC collider
- Preliminary results suggest similar sensitivities to the estimated bounds obtained by the HERA analysis—but the set of coefficients are unique
- Analysis of RHIC EIC pseudo-data underway
- We look forward to the first real bounds being placed by experiments in the near future!

Backup

• The (γ exchange only) LV cross-section is

$$\begin{aligned} \frac{d^3\sigma}{dxdyd\phi} &= \frac{\alpha^2}{q^4} \sum_f q_f^2 f_f(x_f') x_f' \left[\frac{ys^2}{\pi} (1 + (1 - y)^2) \delta_f + \frac{y^2 s}{x} x_f \right. \\ &+ 4 \left(c_f^{k'p} + c_f^{pk'} \right) + \frac{4}{x} (1 - y) c_f^{kk} - 4xy c_f^{pp} \\ &- \frac{4}{x} c_f^{k'k'} + 4(1 - y) (c_f^{kp} + c_f^{pk}) \right] \end{aligned}$$

$$c_{f}^{kp} \equiv c_{f}^{\mu\nu} k_{\mu} p_{\nu}$$

$$x_{f}' = x - \frac{2}{ys} \left(c_{f}^{qq} + x (c_{f}^{pq} + c_{f}^{qp}) + x^{2} c_{f}^{pp} \right) \equiv x - x_{f}$$

$$\delta_{f} = \frac{\pi}{ys} \left(1 - \frac{2}{ys} (c_{f}^{pq} + c_{f}^{qp} + 2x c_{f}^{pp}) \right)$$