Testing Lorentz Symmetry with an Electron-Ion Collider

Nathan Sherrill

Indiana University (IU) Indiana University Center for Spacetime Symmetries (IUCSS) Joint Physics Analysis Center (JPAC)

nlsherri@indiana.edu

4th PIKIO Meeting: September 16th, 2017

In collaboration with Enrico Lunghi (IU)

Outline

[Introduction and motivation](#page-1-0)

- **•** [Some basic notions of Lorentz violation](#page-2-0)
- [The Standard-Model Extension \(SME\)](#page-2-0)

[Quark-sector application: Deep-inelastic](#page-5-0) e-p scattering (DIS)

- [Setup](#page-6-0)
- **[Cross-section](#page-6-0)**
- [Sun-centered frame and rotations](#page-6-0)
- [Previous studies and impact of an EIC](#page-11-0)
	- **[HERA analysis](#page-12-0)**
	- [Prospects at the EIC and \(preliminary!\) results](#page-12-0)
	- [Wrap-up](#page-12-0)

Basic ideas

- An observer transformation is simply a change of coordinates
- \bullet The system is unchanged under the particle transformation we say the system possesses rotation symmetry

Nathan Sherrill (IU/IUCSS/JPAC) [Lorentz violation @ EIC](#page-0-0) JPos17 3 / 20

 \bullet Let's now add a background \vec{B} -field that permeates all of space:

- Performing a particle transformation now produces a physical effect
- This is what we mean by rotation violation
- The same ideas apply to Lorentz violation (rotations are a type of Lorentz transformation)

Nathan Sherrill (IU/IUCSS/JPAC) [Lorentz violation @ EIC](#page-0-0) JPos17 4 / 20

The Standard-Model Extension (SME)

The most general effective field theory characterizing Lorentz and CPT violation is the *framework* known as the SME^{1,2}

$$
\mathcal{L}_{\text{SME}} = \mathcal{L}_{\text{Gravity}} + \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{LV}}
$$

• The terms \mathcal{L}_{LV} contain all possible terms that break Lorentz symmetry

For example: ${\cal L}_{LV}^{QED}\supset a_\mu \bar\psi \gamma^\mu \psi$, $c_{\mu\nu}\bar\psi \gamma^\mu \overleftrightarrow{D}^\nu \psi$

- Important point: coefficients $a_{\mu}, c_{\mu\nu}$, etc. transform as 4-vectors/tensors under observer transformations but as scalars under particle transformations
- Some terms in the SME also violate CPT symmetry
- Since CPT violation implies Lorentz violation 3 the SME generally characterizes this effect as well

- ²V. A. Kostelecký, PRD 69, 105009 (2004)
- ³O.W. Greenberg, PRL 89, 231602 (2002)

Nathan Sherrill (IU/IUCSS/JPAC) [Lorentz violation @ EIC](#page-0-0) JPos17 5 / 20

¹D. Colladay & V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

Outline

[Introduction and motivation](#page-1-0)

- **•** [Some basic notions of Lorentz violation](#page-2-0)
- [The Standard-Model Extension \(SME\)](#page-2-0)

[Quark-sector application: Deep-inelastic](#page-5-0) e -p scattering (DIS)

- [Setup](#page-6-0)
- **•** [Cross-section](#page-6-0)
- [Sun-centered frame and rotations](#page-6-0)
- [Previous studies and impact of an EIC](#page-11-0)
	- **[HERA analysis](#page-12-0)**
	- [Prospects at the EIC and \(preliminary!\) results](#page-12-0)
	- [Wrap-up](#page-12-0)

- At zeroth order in the strong interaction quarks dominantly interact electromagnetically with the electron
- There are many possible terms to consider but we focus solely on one class of spin-independent CPT-even contributions:⁴

$$
\mathcal{L} = \sum_{f=u,d} (g^{\mu\nu} + c_f^{\mu\nu}) \bar{\psi}_f \left(\frac{1}{2} i \gamma_\mu \overleftrightarrow{\partial}_\nu - q_f \gamma_\mu A_\nu \right) \psi_f
$$

Equivalent to $\gamma_\mu \to \gamma_\mu + c_{\mu\nu} \gamma^\nu$ for $f = u, d$ only (dominant proton flavor content)

⁴V. A. Kosteleck´y, E. Lunghi, A. Vieira, PLB 729, 272-280, 2017

Nathan Sherrill (IU/IUCSS/JPAC) [Lorentz violation @ EIC](#page-0-0) JPos17 7 / 20

- **•** The observable of interest is the differential cross-section $d\sigma$
- **•** Schematically:

$$
d\sigma \sim \frac{|\mathcal{M}|^2}{F} dQ
$$

 \bullet Effects of LV are considered on the amplitude $\mathcal M$

$$
i\mathcal{M} = (-ie)\bar{u}(k')\gamma_{\mu}u(k)\frac{-i}{q^2}(ie)\int d^4x e^{iq\cdot x}\langle X|J^{\mu}(x)|P\rangle
$$

$$
J^{\mu}(x) = q_f\bar{\psi}_f(x)\Gamma_f^{\mu}\psi_f(x)
$$

$$
\Gamma_f^{\mu} = \gamma^{\mu} + c_f^{\mu\nu}\gamma_{\nu}
$$

Using the optical theorem the hadronic vertex is related to the forward Compton-amplitude $W^{\mu\nu}$ which we evaluate using the parton model

$$
W^{\mu\nu} \simeq i \int d^4x e^{iq \cdot x} \int_0^1 d\xi \sum_{f=u,d} \frac{f_f(\xi)}{\xi} \langle \xi P | T \{J^\mu(x) J^\nu(0)\} | \xi P \rangle
$$

• The spin-averaged differential cross-section is

$$
\frac{d^3\sigma}{dx dy d\phi} = \frac{\alpha^2 y}{2\pi q^4} L^{\mu\nu} Im[W_{\mu\nu}]
$$

- In the presence of LV there is a non-trivial dependence on the azimuthal (final state electron) scattering angle ϕ
- Averaging over ϕ enables us to split up the cross-section

$$
\left. \frac{d^2 \sigma}{dxdy} \right|_{SME} = \left. \frac{d^2 \sigma}{dxdy} \right|_{SM} + \left. \frac{d^2 \sigma}{dxdy} \right|_{LV}
$$

with

$$
\left.\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}y}\right|_{LV}\propto c_f^{\mu\nu}\beta_{\mu\nu}(p,q,x,y)_f
$$

Sun-centered frame and rotations

- The standard choice of frame is the Sun-centered celestial-equatorial frame5,⁶
- This frame is approximately inertial over the duration of most experiments

Coefficients for LV are approximately constant in this frame

 5 V.A. Kostelecký and M. Mewes, Phys. Rev. D 66, 056005 (2002)

 6 Q. Bailey and V.A. Kostelecký, Phys. Rev. D 74, 045001 (2006)

Nathan Sherrill (IU/IUCSS/JPAC) [Lorentz violation @ EIC](#page-0-0) JPos17 10 / 20

• For laboratory measurements the rotation of the Earth *induces a* sidereal time-dependence in d σ

- To compare with experimental data, we must therefore perform a frame rotation
- Rotated coefficients from Sun-centered frame to lab frame are

$$
c_{f,lab}^{\mu\nu} = \begin{cases} c_{f,sun}^{kl} R_{ik} R_{jl}, & \mu, \nu = i, j \in \{1, 2, 3\} \\ c_{f,sun}^{0k} R_{ik}, & \mu, \nu = 0, i \end{cases}
$$

Outline

[Introduction and motivation](#page-1-0)

- **•** [Some basic notions of Lorentz violation](#page-2-0)
- [The Standard-Model Extension \(SME\)](#page-2-0)

[Quark-sector application: Deep-inelastic](#page-5-0) e-p scattering (DIS)

- [Setup](#page-6-0)
- **[Cross-section](#page-6-0)**
- [Sun-centered frame and rotations](#page-6-0)

[Previous studies and impact of an EIC](#page-11-0)

- **[HERA analysis](#page-12-0)**
- [Prospects at the EIC and \(preliminary!\) results](#page-12-0)
- [Wrap-up](#page-12-0)

HERA analysis

The first (estimated) constraints on the sidereal time-dependent coefficients of $c_f^{\mu\nu}$ were recently determined⁷ from data taken at HERA⁸

- **Time-independent contributions to** $d\sigma_{IV}$ **were not constrained in this** analysis
- ⁷V. A. Kostelecký, E. Lunghi, A. Vieira, PLB 729, 272-280, 2017

⁸H1 and ZEUS Collaboration, Eur. Phys. J. C (2015) 75:580

Nathan Sherrill (IU/IUCSS/JPAC) [Lorentz violation @ EIC](#page-0-0) JPos17 13 / 20

Prospects at EIC and (preliminary!) results

JLab EIC (JLEIC) proposed configuration:

- Simulated reduced cross-section σ_r data of inclusive e-p DIS have been provided 9 for with ranges of \times and Q^2 characteristic of the JLEIC design parameters
- The data include values of $x \in [0.009, 0.9]$ and $Q^2 \in [2.5, 631]$ GeV² along with statistical and systematic uncertainties
- Detector electron beam energy is fixed at $E_e = 10$ GeV whereas we have datasets with the proton beam energy set to $E_p = 20, 60, 80,$ and 100 GeV
- The general outline of the extraction of bounds on the coefficients is as follows:

-We integrate the LV part of the cross-section into 4 bins of sidereal time

-1000 randomized, Gaussian-distributed pseudo-experiments are generated that produce $\sigma^{\sf exp.}_{r,ijk}$ at each $({\sf x}, {\sf Q}^2, \Delta)$ value $i,$ pseudo-experiment i , and bin k

⁹Data generated by A. Accardi (JLab/Hampton U.) and Y. Furletova (JLab)

- The 95% confidence level constraints on the magnitudes of each sidereal time-dependent coefficient are found by minimizing the χ^2 :

$$
\chi^2[c_f^{\mu\nu}]_{i,j} = \sum_{k=1}^{\text{nbins}} \frac{\left[\sigma_{r,ijk}^{\text{exp.}} - \sigma_{r,ik}^{\text{SME}}(c_f^{\mu\nu})\right]^2}{\Delta_i^2}
$$

The JEIC colatitude is $\chi \approx$ 52.9 $^{\circ}$ and there are two detectors with the following directions North of East:

Orientation 1: $\psi \approx 47.6^{\circ}$ Orientation 2: $\psi \approx -35.0^{\circ}$

Table 1. and Table 2. on the following pages summarize our best estimates

TABLE 1. Orientation $I - Un(correlated)$ Constraints

	c_u^{TX}		c_u^{TY}		c_n^{XZ}
$E_p(\rm{GeV})$	$Construct \times 10^5$	$E_p(\rm{GeV})$	$Construct \times 10^5$	$E_p(\rm{GeV})$	Constraint $\times 10^5$
20	7.18(3.04)	20	7.02(3.10)	20	16.3(6.90)
60	3.47(1.66)	60	3.45(1.62)	60	7.69(3.67)
80	0.98(0.87)	80	0.96(0.87)	80	2.15(1.92)
100	0.78(0.61)	100	0.76(0.61)	100	1.72(1.35)
c_n^{YZ}		c_{ii}^{XY}		$ c_{u}^{XX}-c_{u}^{YY} $	
$E_p(\overline{\text{GeV}})$	$Construct \times 10^5$	$E_p(\overline{\text{GeV}})$	Constraint $\times 10^5$	$E_p({\rm GeV})$	$Construct \times 10^5$
20	15.9(7.03)	20	23.9(10.3)	20	46.5(19.9)
60	7.64(3.60)	60	11.3(5.39)	60	22.0(10.49)
80	2.10(1.91)	80	3.16(2.84)	80	6.12(5.52)
100	1.71(1.35)	100	2.56(2.02)	100	4.98(3.93)
	c_d^{TX}		c_d^{TY}		c_d^{XZ}
$E_p({\rm GeV})$	$Construct \times 10^4$	$E_p({\rm GeV})$	Constraint $\times 10^4$	$E_p({\rm GeV})$	Constraint $\times 10^4$
20	11.8(5.19)	20	11.9(5.16)	20	26.8(11.8)
60	5.84(2.79)	60	5.90(2.78)	60	12.94(6.17)
$\overline{80}$	1.58(1.41)	80	1.58(1.42)	80	3.48(3.10)
100	1.23(1.04)	100	1.23(1.05)	100	2.71(2.29)
	c_d^{YZ}		c_d^{XY}		$ c_d^{XX} - c_d^{YY} $
$E_p({\rm GeV})$	$Construct \times 10^4$	$E_p({\rm GeV})$	$Construct \times 10^4$	E_p (GeV)	$Construct \times 10^4$
20	26.9(11.7)	20	39.1(17.2)	20	76.0(33.5)
60	13.1(6.17)	60	19.1(8.99)	60	37.2(17.5)
80 100	3.47(3.13) 2.71(2.31)	80 100	5.01(4.56) 3.99(3.40)	80 100	9.74(8.88) 7.41(6.16)

TABLE 2. Orientation $II - Un(correlated)$ Constraints

Wrap-up

- We have estimated the constraints obtainable on a particular subset of LV coefficients in the quark-sector of the SME
- This was done by analyzing simulated inclusive DIS data for the proposed JLEIC collider
- Preliminary results suggest similar sensitivities to the estimated bounds obtained by the HERA analysis—but the set of coefficients are unique
- Analysis of RHIC EIC pseudo-data underway
- We look forward to the first real bounds being placed by experiments in the near future!

Backup

• The (γ exchange only) LV cross-section is

$$
\frac{d^3 \sigma}{dx dy d\phi} = \frac{\alpha^2}{q^4} \sum_f q_f^2 f_f(x'_f) x'_f \left[\frac{ys^2}{\pi} (1 + (1 - y)^2) \delta_f + \frac{y^2 s}{x} x_f + 4 \left(c_f^{k'p} + c_f^{pk'} \right) + \frac{4}{x} (1 - y) c_f^{kk} - 4 x y c_f^{pp} - \frac{4}{x} c_f^{k'k'} + 4(1 - y) \left(c_f^{kp} + c_f^{pk} \right) \right]
$$

$$
c_f^{kp} \equiv c_f^{\mu\nu} k_\mu p_\nu
$$

\n
$$
x_f' = x - \frac{2}{ys} \left(c_f^{qq} + x(c_f^{pq} + c_f^{qp}) + x^2 c_f^{pp} \right) \equiv x - x_f
$$

\n
$$
\delta_f = \frac{\pi}{ys} \left(1 - \frac{2}{ys} \left(c_f^{pq} + c_f^{qp} + 2xc_f^{pp} \right) \right)
$$

Nathan Sherrill (IU/IUCSS/JPAC) [Lorentz violation @ EIC](#page-0-0) JPos17 20 / 20