Probing the chirality of Leptoquark couplings in $the \ light \ of \ R_{D^*}, \ R_{K^*} puzzle$ (Work in progress with Dr. Yu Gao)

> Joydeep Roy Department of Physics and Astronomy

Wayne State University Detroit, Michigan, U.S.A

4th PIKIO Meeting, 16 September 2017, U of Kentucky, Lexington

Outline

- Motivation
- Introduction to Leptoquarks (LQs)
- Contribution of LQs in solving the puzzle
- Production & decay of LQs
- Conclusion and Outlook

Motivation

- Mesons are particles made of a quark and an antiquark $(q\bar{q})$.
- Most common examples are:

Unflavored light mesons: $\pi^{\pm}(u\bar{d}), \eta(\frac{u\bar{u}+d\bar{d}-2s\bar{s}}{\sqrt{6}})$ etc, Charmed mesons: $D^{*+}(c\bar{d}), D^{*0}(c\bar{u})$ etc, Strange mesons: $K^{*+}(u\bar{s}), K^{*0}(d\bar{s})$ etc, Bottom mesons: $B^{+}(u\bar{b}), B^{0}(d\bar{b})$ etc.

- Being lighter compared to baryons, they are easier to produce at the colliders.
- They are mostly unstable and thus easier to study their highenergy behavior.

Motivation

• Recently BaBar and Belle experiments measured the ratio of branching fractions of *B* meson decays:

$$R_{D^*} = \frac{\text{Br}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau})}{\text{Br}(\bar{B} \to D^* l^- \bar{\nu}_l)} (l = e, \mu) = 0.316 \pm 0.016 \pm 0.010 \text{ (arXiv:} 1603.06711) R_{D^*}^{\text{SM}} \cong 0.252 \pm 0.003$$

- Since these decays happen at the tree-level, new physics (NP) with new particle is required to explain these anomalies.
- Leptoquarks (LQs) are popular candidate for this NP.

Leptoquark (LQ)

- Leptoquarks are hypothetical fields that simultaneously couple or decay to a quark and a lepton.
- They carry both Baryon no. (B) and Lepton no. (L) and can turn quarks into leptons and vice versa.
- LQs can be of either scalar (spin-zero) or vector (spin-one) nature.
- There are six scalar and six vector LQ multiplets under the Standard Model gauge group.

Leptoquark (LQ)

(SU(3), SU(2), U(1))	Spin	Symbol	Type	F
$(\bar{3}, 3, 1/3)$	0	S_3	$LL(S_1^L)$	-2
(3, 2, 7/6)	0	R_2	$RL(S_{1/2}^L), LR(S_{1/2}^R)$	0
(3, 2, 1/6)	0	$ ilde{R}_2$	$RL\left(ilde{S}_{1/2}^{L} ight), \overline{LR}\left(ilde{S}_{1/2}^{\overline{L}} ight)$	0
$(\bar{3}, 1, 4/3)$	0	\tilde{S}_1	$RR(\tilde{S}_0^R)$	-2
$({\bf \overline{3}},{\bf 1},1/3)$	0	S_1	$LL(S_0^L), RR(S_0^R), \overline{RR}(S_0^{\overline{R}})$	$^{-2}$
$(\bar{3}, 1, -2/3)$	0	\bar{S}_1	$\overline{RR}(\overline{S}_{0}^{\overline{R}})$	-2
(3, 3, 2/3)	1	U_3	$LL(V_1^L)$	0
$(\bar{3}, 2, 5/6)$	1	V_2	$RL(V_{1/2}^L), LR(V_{1/2}^R)$	-2
$(\bar{3}, 2, -1/6)$	1	$ ilde{V}_2$	$RL(\tilde{V}_{1/2}^{L}), \overline{LR}(\tilde{V}_{1/2}^{\overline{R}})$	-2
(3, 1, 5/3)	1	\tilde{U}_1	$RR(\tilde{V}_0^R)$	0
(3, 1, 2/3)	1	U_1	$LL(V_0^L), RR(V_0^R), \overline{RR}(V_0^{\overline{R}})$	0
(3, 1, -1/3)	1	\overline{U}_1	$\overline{RR}(\overline{V}_0^{\overline{R}})$	0

List of Leptoquarks, (arXiv:1603.04993)

LQ-Fermion interaction

$$\mathcal{L}_{Fermion}^{LQ} = C_{LQ}^{ij} \bar{Q}_{iL}^{a} \gamma^{\mu} \tau^{A} L_{jL} V_{\mu}^{a,A} + \text{h.c.}$$

 C_{LQ}^{ij} is LQ Coupling matrix with generation indices *i*, *j* $Q_L(L_L)$ are left-handed quark (lepton) doublet V_{μ}^a is the color triplet vector leptoquark τ^A are the SU(2) generators, Pauli matrices

LQ-Gluon interaction

• The Vector LQ (V)-gluon interaction is given by this effective Lagrangian term

$$\mathcal{L}_{QCD}^{LQ} = -\frac{1}{2} F_{\mu\nu}^{\dagger} F_{\dagger}^{\mu\nu} + M_V^2 V_{\mu}^{\dagger} V^{\mu} - i g_s \kappa V_{\mu}^{\dagger} G^{\mu\nu} V_{\nu}$$

(arXiv:hep-ph-9609267)

LQ-Gluon interaction

$$\mathcal{L}_{QCD}^{LQ} = -\frac{1}{2} F_{\mu\nu}^{\dagger} F_{\dagger}^{\mu\nu} + M_V^2 V_{\mu}^{\dagger} V^{\mu} - i g_s \kappa V_{\mu}^{\dagger} G^{\mu\nu} V_{\nu}$$

 $F^{\mu\nu} = D_{\mu}V_{\nu} - D_{\nu}V_{\mu}$, e.m. field strength tensor $D_{\mu} = \partial_{\mu} - ig_s T_a G^a_{\mu}$, gauge covariant derivative of SU(3) $G^{\mu\nu}$ is the Gluon field strength tensor G^a_{μ} is the gluon field, T_a is the SU(3) generator κ is anomalous chromomagnetic moment, usually 1.

Effective Lagrangian

• The effective Lagrangian would therefore take the form

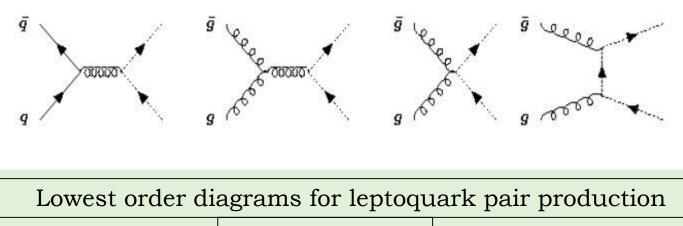
$$\mathcal{L}_{effective}^{LQ} = \mathcal{L}_{SM} + \mathcal{L}_{Fermion}^{LQ} + \mathcal{L}_{QCD}^{LQ}$$

• This effective Lagrangian is not unique, other chiral terms can also be added.

Contribution of LQs

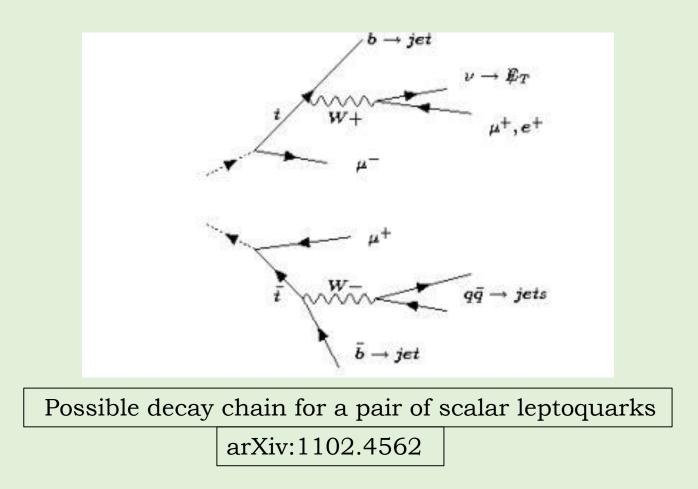
• Remember $D^{*+}(c\bar{d}), D^{*0}(c\bar{u})$ etc; $K^{*+}(u\bar{s}), K^{*0}(d\bar{s})$ etc.

$$\overline{B} \to D^* \tau^- \, \overline{\nu}_\tau \Longrightarrow \mathbf{b} \to c l \overline{\nu}_l ;$$
$$B^0 \to K^{*0} \mu^+ \mu^- \Longrightarrow \mathbf{b} \to s l^+ l^-$$

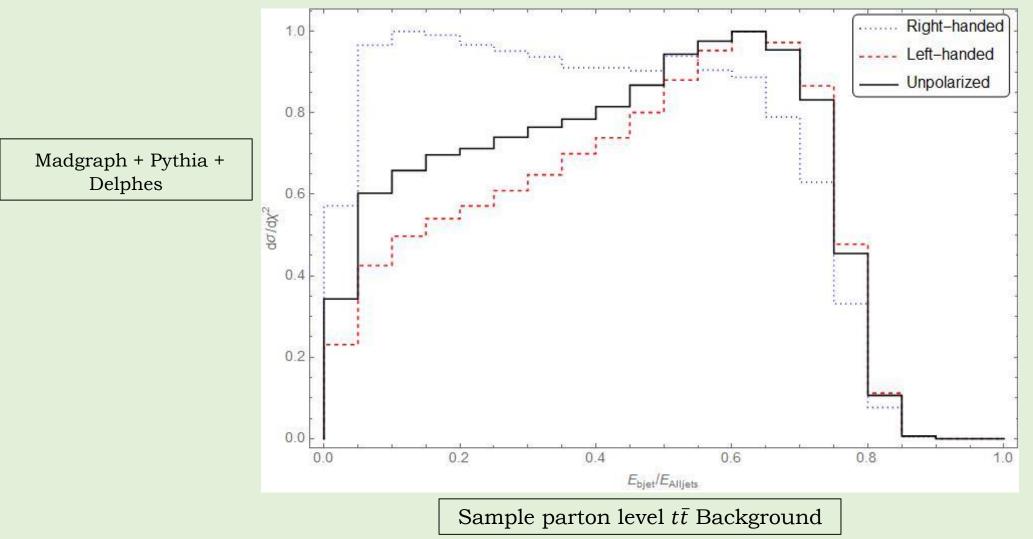

- In SM these transition are absent due to zero contribution to the Wilson Coefficients.
- $\mathcal{L}_{effective}^{LQ}$ can contribute non-zero values to the Wilson Coefficients via Fierz transformation.

Contribution of LQs

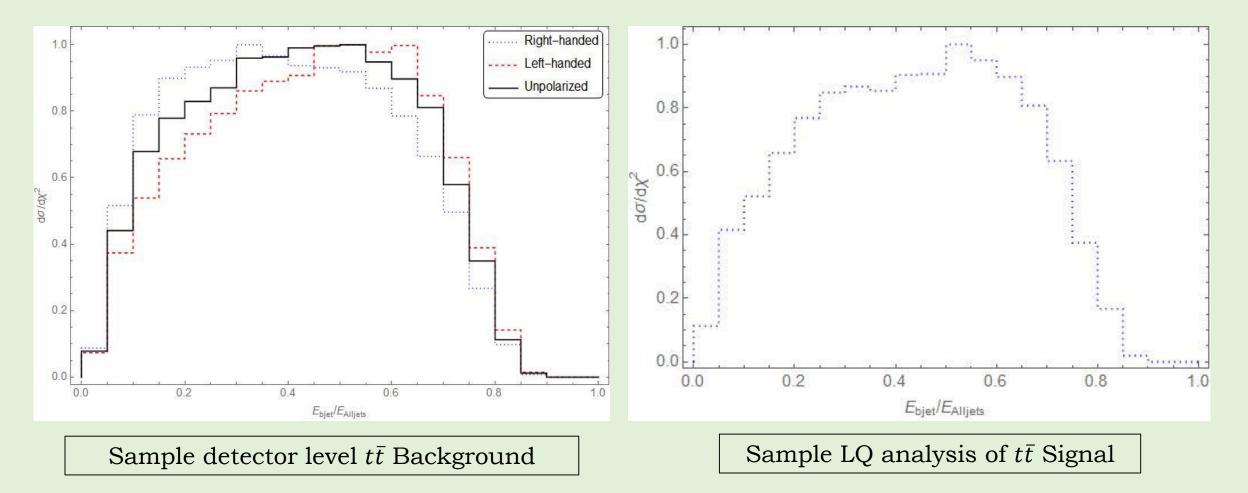
- Chirality of LQ couplings, C_{LQ}^{ij} are important in determining the contributing Wilson coefficients.
- This chirality can be tested by comparing with the known SM background.
- Therefore we need to look at the decay channel and understand the signal at the collider.


LQ Pair Production

- LQs can be produced either singly or in pairs in hadronic colliders.
- Pair production proceeds via QCD interactions.


arXiv:1102.4562

LQ Decay


Preliminary Results

• Left or right handed tops can be easily separated

Preliminary Results

Madgraph + Pythia + Delphes

Conclusion

- Experimental results from *B*-factory indicate the existence of New Physics (NP).
- LQs can generate additional Wilson coefficients which contribute to the NP and thus towards explaining the R_{D^*} , R_{K^*} puzzle.
- Chirality of reconstructed top quarks can probe the chirality of LQ coupling.

Outlook

- Top being the heaviest quark, decays before hadronization. We can reconstruct the $t\bar{t}$ masses and compare it with the unpolarized SM $t\bar{t}$ background.
- With current high luminosity used by LHC we can distinguish the chiral signals and probe the chirality of LQ.
- Similarly we can also add other chiral terms in the $\mathcal{L}_{effective}^{LQ}$ and probe the chirality of those LQs.

Thank you !