# Research track 2: Data transfer and access

Sergey Panitkin (BNL)

### Outline

- Introduction
- Pilots IO on DTNs
- Containers on Titan (in progress)
- Summary and Plans

#### **IO** issues on DTNs

- In November we got a notice from OLCF storage support (Jesse Hanley) about large number of open/close operations originated from the DTNs.
  - Different issue from payload generated Luster MDS problem observed in June
- Main reason access to pilot log file
- At that time we were running with ~15 pilots
- We have been running with the same pilot version on the DTNs since March 2017

## IO issues on DTNs: Access to pilot logs

- 5 minute sample of opens on dtn{35,36,37} gave ~66k, 125k, and 128k opens respectively
- Examples of the number of open() operations to the pilotlog files (5 min sampling):

```
6328 $PROJDIR/pilots_workdir1/Panda_Pilot_90065_1511867945/pilotlog.txt 10379 $PROJDIR/pilots_workdir2/Panda_Pilot_50511_1511869667/pilotlog.txt 8251 $PROJDIR/pilots_workdir3/Panda_Pilot_118163_1511874836/pilotlog.txt
```

- Many log files are opened simultaneously, since many pilots are running
- Open is followed by close
- Pilots can run for more than 2 hours writing ~400k log messages

## Log messages

- Single logfile analysis ('module', N messages)
  - Pilot modules sorted by verbosity

```
[('pUtil.py', 87531), ('Monitor.py', 77607), ('PandaServerC', 65850), ('ATLASExperim', 34825), ('SiteMover.py', 30445), ('FileState.py', 26441), ('RunJobUtilit', 23432), ('Mover.py', 18384), ('GFAL2SiteMov', 15480), ('RunJobTitan.', 12985), ('JobLog.py', 7810), ('UpdateHandle', 5597), ('FileHandling', 5345), ('SiteInformat', 3582), ('ATLASSiteInf', 3564), ('Job.py', 3150), ('WatchDog.py', 3130), ('SiteMoverFar', 2376), ('RunJob.py', 1748), ('ErrorDiagnos', 700), ('Node.py', 256), ('JobRecovery.', 244), ('processes.py', 32), ('normal', 14), ('Experiment.p', 5), ('DBReleaseHan', 2), ('PilotTCPServ', 1)]
```

27 modules 430536 messages (delimiter lines ignored)

## Log Messages

#### • Top 20 messages ('module | message', count):

```
[('pUtil.py | getSiteInformation: got experiment=ATLAS', 7330), ('PandaServerC | Batch system type
was not identified (will not be reported)', 4244), ('pUtil.py | HTTP connect using server:
https://aipanda031.cern.ch:25443/server/panda', 4244), ('ATLASExperim | Memory summary
dictionary not yet available', 4244), ('pUtil.py | toServer: cmd = updateJob', 4244), ('PandaServerC |
pilotId: xtestP001', 4244), ('PandaServerC | Did not find any reported high priority errors', 4244),
('PandaServerC | Stdout tail will not be sent (debug=False)', 4244), ('PandaServerC | Will send pilotID:
xtestP001', 4244), ('PandaServerC | Checking if new site movers workflow is enabled:
use newmover=False', 4244), ('PandaServerC | getXML called', 4244), ('pUtil.py | Executing command:
curl --silent --show-error --connect-timeout 100 --max-time 120 --insecure --compressed --capath
/lustre/atlas/proj-shared/csc108/app dir/pilot/grid env/external/grid-security/certificates/ --cert
/ccs/home/doleynik/x509up_u10469 --cacert /ccs/home/doleynik/x509up_u10469 --key
/ccs/home/doleynik/x509up u10469 --config /lustre/atlas2/csc108/proj-
shared/pilots_workdir1/Panda Pilot 90065 1511867945/curl.config
https://aipanda031.cern.ch:25443/server/panda/updateJob', 4244), ('pUtil.py | Sending attemptNr=1
for cmd=updateJob', 4244), ('ATLASExperim | File does not exist either: /lustre/atlas2/csc108/proj-
shared/sandboxes/dtn35 1 01a961d3-ff7b-4216-a54f-
f68f3f51081b/memory monitor summary.json', 4244), ('PandaServerC | jobDispatcher acknowledged
with 0', 4244), ('FileHandling | Pilot error report does not exist: /lustre/atlas2/csc108/proj-
shared/sandboxes/dtn35 1 01a961d3-ff7b-4216-a54f-f68f3f51081b/pilot error report.json (should
only exist if there actually was an error)', 4244), ('ATLASExperim | summary dictionary={}', 4244),
("PandaServerC | ret = (0, {'command': 'NULL', 'StatusCode': '0'}, 'command=NULL&StatusCode=0')",
4243), ("pUtil.py | Dispatcher response: [('command', 'NULL'), ('StatusCode', '0')]", 4243),
("PandaServerC | data = {'command': 'NULL', 'StatusCode': '0'}", 4243)]
```

## Fixing Pilot1 logs

The reason for this was identified as Pilot1 logging implementation

```
def appendToLog(txt):
""" append txt to file """

    try:
        f = open(pilotlogFilename, 'a')
        f.write(txt)
        f.close()
    except Exception, e:
```

- Straightforward fix: Reduce the number of log messages by hand
- After Danila implemented the fix 5 min total went from 320k to 93k opens
- Pilot 2 and Harvester do not have this problem since both use Python logging module

#### Containers in ATLAS

- ATLAS started testing containers on Grid in 2017
  - Docker, Singularity
  - Typically requires Centos 7 installed on a site for full
     Singularity support
  - Site Singularity configuration plays large role
- Containers for HPC were tested at NERSC with Shifter and Singularity
- Containers are viewed as software distribution tool for HPC machines without CVMFS
  - Container with full (deduplicated) CVMFS tree ~600GB
  - Single release container ~50GB

#### **Containers on Titan**

- Singularity container platform became available for tests on Titan in 2017
- Accessible on batch worker nodes and interactive worker nodes
- Currently v2.4.0 module is available
- Some documentation and scripts are available in github
- Singularity on Titan imposes several requirements on user container images
  - No run-time mount points, all file system bindings have to defined in the image. Run time bindings (-b fs1:fs2) are not supported, since CNL kernel does not support overlayfs. (Singularity on Summitdev supports this option)
  - Placeholder for Titan specific setup script in the image (to be invoked at run time)
  - Linux userIDs in the image should coincide with Titan's userIDs

### Container build for Titan I

- Singularity installed from scratch on my laptop, since root privileges are needed for container image building
  - MacBook Pro 2016 laptop with VirtualBox, Vagrant VM with Singularity 2.4, following Singularity documentation
  - Manual install of Singularity v2.4.2 in Vagrant VM later on. A lot of bug fixes in this version.
- Images with CentOS 6, 7 as base OS, loaded at build time from Docker Hub
  - Tried several different kernels, did not see much difference
  - Added a few system libraries required by ATLAS software
- "Post"-stage script for Titan specific mount points (from Adam Simpson's Github)
- ATLAS release 21.0.15 installed using Pavlo's scripts from Github
  - Special handling for installation of ATLAS DBRelease fix for 21.0.15
  - Installed customized DBRelease configuration files for the container
  - Some extra rpms for common tools required for ATLAS release install scripts (git, perl, wget, ...)
- Several users added with proper Titan userIDs

#### Container build for Titan II

- Image build time ~2 hours on MacBook Pro
  - Max system load during build ~40%
- Container file sizes
  - Image file on top of Ext3 filesystem ~29GB
  - SquashFS based image file ~7GB
    - Support for SquashFS was introduced recently in Singularity v2.4
    - SquashFS supports compression
  - Same ATLAS release installed on Titan ~27GB
- For comparison some containers build by Wei Yang (SLAC)
  - "Fat" ATLAS container ~600GB
    - Full ATLAS (deduplicated) cvmfs
  - Container with rel. 21.0.15 and DBRelease ~ 50GB

#### ATLAS container tests on Titan

- Ext3 and Squash containers were copied to Lustre and NFS on Titan
- Tested with ATLAS production job
  - Short jobs with 16 events
- Jobs submitted manually to batch queue, f.e.
  - aprun -n 1 -N 1 -d 15 -r1 singularity exec
     /ccs/proj/csc108/AtlasReleases/containers/my\_centos\_6\_docker\_Titan\_DBRelease
     \_with\_gcc\_v2.simg ./run.sh
  - Release setup done at run time via run.sh
  - Job working directory is on Lustre
  - Root Input file with events on NFS or Lustre
- Timing from Athena logs
- Tried several container placement options including RAMdisk

#### ATLAS container tests on Titan: Some results

| Туре           | Location | Size, GB | Setup time, s | Run time, s | Job ID  |
|----------------|----------|----------|---------------|-------------|---------|
| Direct Release | NFS      | 26.7     | 357           | 1610        | 3801346 |
| SquashFS       | NFS      | 7.2      | 742           | 4272        | 3800895 |
| Ext3           | NFS      | 29       | 766           | 4029        | 3801075 |
| SquashFS       | Lustre   | 7.2      | 746           | 4157        | 3807410 |
| Ext3           | Lustre   | 29       | 773           | 4023        | 3807409 |
| SquashFS       | RAM disk | 7.2      | 722           | 4124        | 3801346 |

Setup time: from the transformation start to event loop start

Run time: from the transformation start to exit

#### Some initial observations:

- Simulations in containers run  $\sim$ x2 longer than the simulation ran from disk installed release
  - Is this related to access to the container file?
- No big difference between run times for containers placed on NFS or Lustre (NFS is optimized for read)
- No big difference between Ext3 and SquashFS based containers
- Container started from RAM disk on worker node runs the same
  - Indication that the slowdown is not IO related?!

## Solving the slow containers puzzle

- After discussing test results with Adam
   Simpson (OLCF) and trying several other possibilities I looked at dl-intercept feature
- This feature is active by default on Titan and is used to intercept loading of MPI related shared libraries within containers
- In the current Singularity setup at OLCF dlintercept is on but can be switched off after Singularity module is loaded
  - unset SINGULARITYENV\_LD\_AUDIT

## Running with DL AUDIT OFF

| Туре                  |              | Location | Size, GB | Setup time, s | Run time, s | Job ID  |
|-----------------------|--------------|----------|----------|---------------|-------------|---------|
| Direct Release        |              | NFS      | 26.7     | 357           | 1610        | 3801346 |
| SquashFS dl_audit ON  |              | NFS      | 7.2      | 742           | 4272        | 3800895 |
| SquashFS dl_audit OFF |              | NFS      | 7.2      | 221           | 1425        | 3822559 |
| Ext3                  | dl_audit OFF | NFS      | 29       | 239           | 1491        | 3822317 |

- Simulations in containers run ~x3 faster when DL AUDIT is turned off
  - "unset SINGULARITY\_DL\_AUDIT"
- Containers run on par or even faster than release installed on NFS
- Not much difference in performance between SquashFS and Ext3 based containers
  - SquashFS based containers are much smaller (x4)

## Container I/O. I

- Splunk profile for simulation in SquashFS container located on NFS
- Lustre file opens/closes



Job 3822559

## Container I/O. II

Splunk profile for simulation in SquashFS container located on NFS
 Job Specific I/O Statistics: Write BW & OST Usage



Job 3822559

## Container I/O. III

Splunk profile for simulation in SquashFS container located on NFS

Job Specific I/O Statistics: Other Metadata Operations



Job 3822559

## Summary

- One issue with IO on DTNs was brought up in November
  - Large number of open/close for pilots log files
  - Analyzed and addressed
- Started work with Singularity containers for Titan
- ATLAS simulations in containers performed well (after the default Singularity option is turned off)
- Containers showed good IO properties with almost no load on Lustre MDS

#### Plans I

- Jan.- May. Containers on Titan for ATLAS
  - Scaling studies.
    - MPI wrapper for containers
    - Strong Scaling
  - Containers created by ATLAS (Wei Yang) at BNL
    - Need to be build and configured to reflect Titan specifics
    - Large size, hard to modify on a laptop
    - Started work with these, still do not work 100% on Titan, transformation crashes
      - Titan specifics, DB configuration
    - Hope to converge on working container (Jan?)
  - Work with Danila on using containers in ATLAS production on Titan
    - Integration with current Pilot setup (with Danila)
    - Containers with MPI wrapper
    - IO properties and timing
  - Containers integration with Harvester (with Danila and Pavlo)
- Containers with NGE (with Matteo)
  - ATLAS simulations are probably the easiest case

#### Plans II

- Mar. –June: Atlas payloads on Summit
  - Contingent on success of the ACSC project (ATLAS software compilation for PowerPC architecture). See talk by A. Undrus
  - ATLAS Geant simulations
    - Performance on Power9
    - Single node scaling (Power9 : 24 cores MT4, 2 CPU per node) AthenaMT?
    - Multi-node scaling
  - IO issues (New storage hierarchy on Summit! 1.6TB NV memory per node, burst buffers,...)
    - Containers with MPI wrapper
    - · IO properties and timing
  - Work with Danila on using containers in ATLAS production on Titan
    - Integration with Pilot
  - Are there backfill opportunities on Summit?!
  - Containers launched with Harvester (with Danila and Pavlo). Harvester on Summit.
  - Containers created by ATLAS (Wei Yang) at BNL.
  - Started work with these, still do not work on Titan
    - Titan specifics, DB configuration
    - Large size, hard to modify on a laptop
    - Need to be build and configured to Titan's specifications
  - GPU intensive applications
    - ML use cases. We have now ML people joint CSC108
- Feb. May . Yoda on Titan
  - Software port, Configuration on Titan , running mode and test
  - Study IO properties