
Harvester at OLCF

Overview
• Remainder: what is PanDA Harvester

• Harvester for HPC

• Harvester & Pilot

• OLCF solution

• Current status

• Nearest plans

2

Remainder: what is PanDA Harvester
• Harvester is a resource-facing service between the PanDA server and collection of pilots for

resource provisioning and workload shaping. It is a lightweight stateless service running on
a VObox or an edge node of HPC centres to provide a uniform view for various resources.

3

Harvester for HPC
• Harvester is the service which

manage a set of agents

• Launching of each agent is initiated

by the state of PanDA jobs through
Harvester core component

• Agents works simultaneously, and
have no direct depending

• Agents interacts with third-party
services through plug-ins

• Each plugin configurable

• One Harvester instances may

serves a set of PanDA queues

• Each PanDA queue may be

configured independently (use own
set of plugins)

• Each PanDA queue may by

served with different workflow

4

Agents & interfaces
• Preparator: prepare (stage in) data for jobs

• WorkMaker: setup pilot(s)

• Submitter: submit pilot(s) to the batch system

• Messenger: interface which responsible for interaction between pilot(s)

and Harvester

• Stager: stage out data

• Monitor: monitor pilot(s) through scheduler
• Sweeper: kill pilots and cleanup sandboxes (working directories)

5

Deployment and configuration
• Harvester can be deployed by pip from github

• With or without root privileges (through «virtualenv")

• Most of dependencies will be installed automatically

• Configuration can be placed remotely and loaded via http(s)

• Sensitive information like database password should be stored only in

local config files

• System config files are read only when the harvester instance is

launched

• Queue config files are read every 10 min so that queue configuration

can be dynamically changed during the instance is running

6

Harvester & Pilot (2.0)
• Pilot is an application which supports execution of payload on working node

• PanDA Pilot is a complex application to support execution of payload on a

grid working nodes:

• It already support two workflows: 'regular job’ and ‘Event service job’

• Communicate with PanDA server, perform stage in of input data, setup

environment for payload, manage of execution of payload, perform stage
out of data, analyze results of execution etc.

• However execution of payload on HPC require only some parts of
functionality of PanDA Pilot and uses much simple, but different, workflows

• Workflows can be different for different HPC

• Common functionality of PanDA Pilot available through API

7

OLCF solution
• Harvester deployed

under virtualenv on
dtn38

• SAGA plugin for
Submitter, Monitor,
Sweeper

• Plugin for Pilot movers
for Preparator

• Multijob worker maker

• File plugin for Messenger

• Rucio plugin for Stager

8

Pilot for Titan
• Evolution of MPI wrapper which was used by Multijob Pilot

• Common (simple) version in place

• Workflow for ATLAS payload more complicated and includes next steps:

• environment setup, by calling special setup script with proper parameters

• moving of input data and part of configuration data to RAM disk of WN

• setup of working directory in RAM disk of WN

• cleanup of working directory

• publish results of execution (job report)

• copy of working directory to Luster for future processing

• A lot of functionality used through Pilot API

9

Current status
• Harvester and additional components (SAGA, Pilot 2.0, Rucio clients) were

successfully deployed in OLCF and launched under virtualenv

• Configured dedicated PanDA queues which used for testing

• Developed a set of plugins: Pilot Mover preparator, SAGA submitter,

SAGA monitor, SAGA sweeper, MultoJob worker maker

• Implemented simple pilot application, more advanced version in process

of testing

• Passed functional testing with generic jobs, testing with ATLAS jobs in

progress

10

Plans
• Short term plan (next 2 month)

• Pass pre-production testing and move ATLAS production through ALCC

allocation to Harvester at OLCF

• Mid-term plan (next 4 month)

• Extend Harvester with modules which will allow to shape payload to

available backfill and move all current production to Harvester

• Long term plan:

• Adapt Yoda in OLCF and integrate facility with ATLAS Event service

11

