Experiments/Users: Molecular Dynamics

Simulating Enzyme Catalysis, Conformational Change, and Ligand Binding/Release

Kwangho Nam Chemistry and Biochemistry University of Texas Arlington

Acknowledgement

Drs. Yaozong Li, Pedro Ojeda-May, Taeho Jo, and Ms. Beata Dulko-Smith

Multiscale simulation

Protein function, issues and simulation tools

String FE simulation method

E, JPCB (2002); Ovchinnikov, JCP (2011)

•Path is optimized using $-M(\theta)\nabla F(\theta)$ as a force while enforcing even arc-length distance along the path, where

$$M_{i,j}(\boldsymbol{\theta}) = \sum_{k} \frac{1}{m_k} \left\langle \frac{\partial \hat{\theta}_i(\boldsymbol{x})}{\partial x_k} \frac{\partial \hat{\theta}_j(\boldsymbol{x})}{\partial x_k} \right\rangle_{\widehat{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{\theta}}$$
$$F_{\alpha^*} - F_0 = \int_0^{\alpha^*} \sum_{i=1}^N \frac{\partial F}{\partial \theta_j^*} \frac{d\theta_j^*}{d\alpha} d\alpha$$

•Slow in achieving convergence (path optimization/FE evaluation).

hOGG1: oxoG extrusion (Cori on NERSC)

Shigdel et al., in preparation

CHARMM design for hybrid MPI/OpenMP/GPU computing

Protein kinases

- Key enzymes in a broad range of signal transduction pathways regulating cell metabolism and growth.
- Share essentially identical kinase domain structure: catalysis and allostery.
- Carry out the same catalytic function: a transfer of a phosphoryl group from ATP to a target residue.

$$ATP + Sub \xrightarrow{PK} ADP + P-Sub$$

Our interests: Protein Tyrosine Kinase (PTK)

Families: 30Subfamilies: 30

In human: 90 (ratio: 90/518~17%)

Figure adopted from Favelyukis, NSMB (2001).

Current status

- 124 nodes for each conf. change simulation: study multiple paths
- Each titan job: 248 nodes (3968 Cores); typically < 1 hr.</p>
- Since Nov. 2017, 2.5 M core hours used.