

EUROPEAN SPALLATION SOURCE

Materials Functional Scope and Lifetime at ESS Target Station

Yong Joong LEE

www.europeanspallationsource.se 7 July, 2017

European Spallation Source ERIC

EUROPEAN SPALLATION SOURCE

A European research facility for international researchers

The world's most powerful neutron source for the study of materials

Produce our first neutrons in 2020

Estimated construction cost of 1 843 M€

EUROPEAN SPALLATION SOURCE

Construction in Progress: June 9, 2017

The ESS facility layout

H⁺ Accelerator: 2 GeV/ 2.5 mA avg. (5 MW) Long pulse: 2.86 ms/14 Hz Target **Spallation Target:** Rotating tungsten target Helium cooled Neutron science systems Linear proton accelerator Instruments:

- 2021: Early Science
- 2025: Completion of 22 Instruments

The ESS Target Station Layout

Target systems under high dose

Spallation Target

- Tungsten blocks in 36 segments
 - Max 0.1 GW/m³ in tungsten
 - Beam stopping in a meter of tungsten
- Helium coolant
 - Mass flow 3.0 kg/s
 - Pressure 1.0 MPa
- Rotational speed 23.3 rpm
- Wheel diameter 2.6 m
- Shaft length > 5 m

Spallation Target: Configuration

Beam on Target

- Beam on target requirements:
 - Beam footprint enclosing
 97.5% beam fraction: 180 mm
 (H) × 60 mm (V)
 - Beam footprint enclosing
 99.9% beam fraction: 200 mm
 (H) × 64 mm (V)
 - Nominal time-averaged peak current density: 56 μA/cm²
 - Maximum time-averaged peak current density: 81 μA/cm²
 - Max displacement of footprint from nominal position: ±5 mm (H), ±3 mm (H)

Spallation Material: Selection

- Pure tungsten
 - Lower DBTT than W-10%Re
 for DPA > 0.3 [H. Ullmaier, F.
 Carsughi, NIM-B 101, 1995]
 - Higher thermal conductivity than other W-alloys [M. Rieth et al, Tech- Rep.-KIT]
 - Tantalum has a higher volumetric decay heat and lower neutron production density.

Spallation Material: R&D

- What should be the maximum allowed stress in tungsten blocks?
 - Tungsten is not a structural material
 - Tungsten is under high thermal stress.
 - Loss of structural integrity of tungsten may lead to a creation of a hot spot in the target, which could cause a premature target failure
 - Cyclic thermal load may induce fatigue failure.
 - Tungsten undergoes a 100°C thermal cycle every 2.4 seconds (7·10⁶ cycles per year)

Tungsten Fatigue

Irradiation Effect: Tensile Strength

EUROPEAN SPALLATION SOURCE

Total elong.

[%]

 $\mathbf{2}$ 0

0

8

0

8

0

47

0

0

41

0

SS

- For radiation damage above 0.1 dpa, all the tungsten specimens failed in a brittle manner with reduced yield strength, at the tested temperatures up to 500 C.
- Preliminary results from STIP-V tungsten tensile specimens also showed the similar

behavi Estimated maximum damage dose Tungsten s

Pre-irrad, annealed at 1600 °C for 1h

in the tungsten block is **2 DPA/year**, As received or **10 DPA** during the 5 year lifetime

As received $1.0 \cdot 10^{29}$ 0.1425300 60 Pre-irrad, annealed at 1200 °C for 1h Unirrad. 0.0300 730 $1.0 \cdot 10^{25}$ Pre-irrad, annealed at 1200 °C for 1h 0.1300 450350Unirrad. Pre-irrad, annealed at 1200 °C for 1h 0.0500580_ $2.0 \cdot 10^{26}$ Pre-irrad, annealed at 1200 °C for 1h 2.0700500150Pre-irrad, annealed at 1600 °C for 1h Unirrad. 0.0300 170_ $1.0 \cdot 10^{25}$ Pre-irrad, annealed at 1600 °C for 1h 0.1350300230 $1.0 \cdot 10^{25}$ Pre-irrad, annealed at 1600 °C for 1h 0.1425300 260Pre-irrad, annealed at 1600 °C for 1h Unirrad. 0.050080

 $1.0 \cdot 10^{25}$

0.1

500

500

320

I. V. Gorynin, et al., Journal of Nuclear Materials, 191-194:421-425, 1992; H. Ullmaier, F. Carsughi, NIM-B 101, 1995

Irradiation Effect: Benchmarking

- 800 MeV proton beam with 32 kW beam power.
- 10 Hz pulse repetition rate with the pulse length 500 ns.
- 154 MPa maximum steady stress.
- 203 MPa peak dynamic stress with the 49 MPa stress amplitude.
- LANSCE Mark-III
 - 800 MeV proton beam with 80 kW beam power.
 - 20 Hz pulse repetition rate with the pulse length 250 ns.
 - Equivalent stress range as TS-2 Target

P. Loveridge and D. Wilcox. HPTW4, 2013

EUROPEAN SPALLATION

SOURCE

Design requirement: Thermal Stress

- Recommended mean stress: 100 MPa
- Recommended stress amplitude: 50 MPa

Poster: K. Sjögreen

Stres Before a Pulse

Stress After a Pulse

EUROPEAN SPALLATION

SOURCE

- What should be the maximum allowed temperature in tungsten blocks?
 - The melting point of tungsten is not an issue in normal operation.
 - In case of air/moisture ingression, the set-off point of tungsten oxidation is an issue.
 - Also an issue is the long-term effect of oxygen impurity in the "pure" helium coolant.

Spallation Material: Oxidation

- Oxidation observed in He atmosphere with a small partial pressure of oxygen above 500°C [J. Habainy et al. IWSMT-12, 2014]
- Reactive vaporization of the hydrated oxide layer is observed in steam above 700°C [G. Greene, C. Frinfrock, Exp. Therm. Fluid Sci. 25 (2001)]

Spallation Material: Degradation of Thermal Conductivity

- Decrease in thermal conductivity by ~30% at 0.6 dpa
- Decrease in electrical conductivity by ~85% at 1.5e20 n/cm² neutron fluence
- Impact of 40% decrease in thermal conductivity:
 - ~37 °C increase in the maximum steady temperature
 - ~42 MPa increase in the maximum steady von Mises sterss
 - Requires a safety factor in temperature calculations

[J. Linke et al. First meeting of CRP on irradiated tungsten, Vienna, 26-28 Nov 2013]

[I. V. Gorynin et al. JNM 191-194 (1992) 421-425]

Design requirements: Temperature

- Normal operation: max. 500°C
- Loss of coolant accidents: max. 700°C

EUROPEAN SPALLATION

SOURCE

Y.Dai, 18.12.2006

STIP-V Tungsten PIE

- A damage rate of 2 dpa/year in the ESS tungsten
- STIP-V: Two 60 x 8 x 1 mm³ tungsten bars
 - Irradiation period: 2007-2008 for total 9.83 Ah p-charge.
 - Irradiation condition: 5-28 DPA at 100-800 C

Cutting of active samples in Hotcell

PIE plan for STIP-V tungsten specimen

- Bend tests
 - 6 low dose , 16 high dose bars
 - Ductility and flexural strength
- Tensile tests
 - 4 high dose specimen
 - Yield and tensile strength
- Hardness tests
 - Irradiation hardening as a function of dose
- Thermal diffusivity with Laser Flash Apparatus
 - 2 low dose, 3 high dose discs
 - Thermal conductivity and specific heat capacity
- SEM & TEM microscopy
 - Fracture mode and microstructural changes at different doses and temperatures

Initial Results: 3P bend tests

EUROPEAN SPALLATION

SOURCE

Next step

- High dose specimen cannot be handled in glove box
 - Currently waiting for licensing of new semi hot cell

Low dose discs to be tested with LFA (thermal diffusivity) as soon as it is allowed

Spallation Materials R&D: M3-beamline of GSI UNILAC

- Uranium beam on tungsten coins
 - Charge state +28
 - Beam energy: 4.8 MeV/u
 - Ion flux: Max. 1e10 ions/cm²/pulse
 - Pulse length: 100 us
 - Repetition rate: 1 Hz

ESS beam

- Energy 2.5 GeV
- Rep. rate 14 Hz
- Pulse length 2.86 ms

EUROPEAN SPALLATIO

Purpose of experiment is to study:

- Mechanical integrity of W under dynamic beam loads
- Radiation induced changes of mechanical properties
- Stability of W-oxide layer
 - Sample pre-oxidized at 500°C in air for 24h
- Changes in electrical and thermal conductivities
- Shock response of W foil under pulsed beam and its change due to irradiation

EUROPEAN SPALLATION SOURCE

Calculations on uranium beam irradiation

- Assumptions for calculation: Max. U-beam flux
- Main result:
 - Steady temperature: 87 C
 - Temperature range during pulse: 113 C
 - Max. post-pulse temperature: 200 C (ESS block: Max. 447 C)
 - Max. post-pulse shear stress on sample surface: 130 MPa (ESS block: Max. 110 MPa von Mises stress)

Temperature Contour 1 3.606e+002 3.546e+002 3.485e+002 3.424e+002 3.364e+002 3.303e+002 3.182e+002 3.121e+002 3.061e+002 3.000e+002 K

Hardness increases with depth

Vibrational analysis - Preliminary results

 Surface velocity of W foil as a function of time at an accumulated fluence of 5e10¹¹ U/cm² (left) and 4e10¹³ U/cm² (right)

Frequency of vibrations increased with irradiation – shock waves reflecting off boundary of nondamaged material?

By Pascal Simon, GSI

Four tungsten foils were irradiated with gold ions to different fluences.

- from 540 to 590 HV0.5, on average
- 590 HV0.5 corresponds to ~0.02 dpa
- Frequency of shock waves increased with irradiation
- Oxide easily blown off during irradiation
 - ~1.3 μm layer removed
- Thermal resistivity of irradiated samples decreased with increasing fluence
- Nano-hardness on cross-section of coin in progress

Vendor Evaluation

- Tungsten blocks from 6 vendors were evaluated.
 - Visual Inspection
 - Dimensional compliance
 - Chemical composition
 - Density
 - Young's modulus
 - Hardness
 - Residual stress
 - Tensile strength (3-point bending tests)

Spallation Material: Corrosion

EUROPEAN SPALLATION SOURCE

ESS Target Helium Experiment at LTH (ETHEL)
 – 3 g/s at 6 bar

35

Spallation Target: Vessel

- Beam on target requirements:
 - Beam footprint enclosing
 97.5% beam fraction: 180 mm
 (H) × 60 mm (V)
 - Beam footprint enclosing
 99.9% beam fraction: 200 mm
 (H) × 64 mm (V)
 - Nominal time-averaged peak current density: 56 μA/cm²
 - Maximum time-averaged peak current density: 81 μA/cm²
 - Max displacement of footprint from nominal position: ±5 mm (H), ±3 mm (H)

Target Vessel: Materials Choice

- Primary choice: SA 316L
 - Fracture mode is still ductile up to 17 DPA
 - Operational experiences at SNS and ISIS
 - The DBTT of BCC-steel (e.g. T91) increases with dpa.
- Considered Material:
 - SA-Inconel 718
 - Operational experiences at LANSCE, ISIS, SNS
 - SA alloy 718 shows a good ductility to 18 dpa
 - T91
 - MEGAPIE target beam window sustained up to 6 DPA.
 - Higher strength which allows thinner top and bottom plates of the target vessel.

Y. Dai, et al., JNM 377 (2008) 109

EUROPEAN SPALLATION

SOURCE
Target Vessel: Lifetime estimates

- A maximum damage rate of 1.4 dpa/GW-d in the beam entrance window of the ESS target.
 - Lifetime limit guide: 10
 dpa of accumulated
 dose: SNS
 - Thermal fatigue might impose more conservative lifetime limits

Target Vessel: Lifetime

- Annual Damage Rate
 - 1.6 dpa/year @5MW 5400h
- Lifetime is set to be maximum displacement damage of 8 dpa:
 - 5 years of lifetime: max.8 dpa
 - Potential for longer
 lifetime benchmarking
 SNS experience

EUROPEAN SPALLATION

SOURCE

Tuning dump: Beam parameters

Tuning Mode	Energy [MeV]	Current [mA]	Pulse [us]	Rep. Rate [Hz]
Droho	90	6.25	5	1
Probe	220	6.25	5	1
	570	62.5	5	1
Fast Tuning	1300	62.5	5	14
	2000	62.5	5	14
	570	62.5	50	1
Slow Tuning	1300	62.5	50	1
	2000	62.5	50	1
Long Pulse	570	62.5	2857	1/10
	1300	62.5	2857	1/20
	2000	62.5	2857	1/30

Tuning Dump Specification

- Dump Core:
 - Material: CuCr1Zr
 - Higher Mechanical Strength than OF-Cu
- Conducting Column:
 - Material: OF-Cu
 - High Thermal Conductivity
 - Active water cooling on the top

Stress: Full-Pulse and Full Current

Beam Footprint	Energy [MeV]	Max. Stress Post-	Max. Stress Range	Fatigue Limit [MPa]	
		pulse [MPa]	[MPa]	B. Singh et al. Rosø-R-1528, 2	.00
16 x 16 mm ²	570	101	70	200	
16 x 16 mm²	1300	106	86	200	
16 x 16 mm²	2000	122	106	200	
16 x 25 mm²	2000	96	82	200	

Radiation Damage Effect

- Maximum 0.05 dpa/year.
 - Maximum 2 dpa damage for the 40 years of lifetime
 - Maximum 10% degradation of thermal conductivity estimated
- No real impact on the dump lifetime, with a good safety margin
 - Maximum 2% increase in peak temperature for 2 dpa
 - Almost no change in stress amplitudes for 2 dpa.

Annual damage rate in the tuning dump core: rms_x = rms_y =16 mm

Proton Beam Window (PBW) Materials

[س م 40

> 20 10

-10

-20 -30

-40

-50

- The PBW receives peak proton current density 89.1 μA/cm².
 - Al-6061-T6 is the baseline material.
 - Al-5754-O is the backup material.

Courtesy Mattias Wilborgsson

Objectives: Lifetime of Aluminum Alloys under Proton Irradiation

- Al-5754-0
 - Operation Record of PSI safety hull: Max. 2750 Heappm (8.8 DPA)
 - ESS Window will have 4388
 He-appm (7.1 DPA)/5400h
 damage at PBW
- Al-6061-T6
 - Has shown superb radiation resistance in neutron irradiation environment.
 - But, there are no proton irradiation data.

Courtesy Yong Dai

PBW Material R&D: BLIP Irradiation Program at BNL

- Purpose: Characterization of helium bubble distribution in Al6061-T6 and Al5754-O
- Beam Parameters
 - Energy: 181 MeV
 - Current: 165 uA
 - Rastered Beam Profile
 - Assessment of the material properties of PBW under proton irradiation

Beam Profile Monitoring System

ESS S

- All the BPM systems planned is based on beamintersecting
 - High irradiation damage induced short service lifetime
 - High thermal load induced structural failure
- Baseline scope of the BPM Systems at the Target Station:
 - Multi-wire profile monitor (MWPM):
 - Set of conducting wires intersecting proton beam
 - Aperture monitor:
 - Set of thin metal blades intersecting the proton beam edge
 - Luminescent coating:
 - Proton beam window (PBW)
 - Beam entrance window (BEW) of the target wheel

Proton Beam Instrumentation Plug

Material choice for harp

- Candidate Materials
 - Pure tungsten: SNS
 - Tungsten-Rhenium alloy: BLIP
 - SiC: JSNS, ISIS, LANSCE
- Material Selection Criteria
 - Disturbance to beam optics
 - Signal characteristics
 - Lifetime limited by radiation damage
 - Endurance to thermal and mechanical loads

UROPEAN PALLATION

• There are five layers of harp made of 100 um thick wires with a pitch of 2 mm.

optics

- For a pencil beam, the beam diverges with:
 - SiC harp: 0.06 mrad
 - W harp: 0.25 mrad

Effect of harps on beam-on-target requirement

EUROPEAN SPALLATION SOURCE

50

Harp	Envelop 180 mm (H) × 60 mm (V)	Envelop 200 mm (H) × 64 mm (V)
No harp	99.38%	99.89%
SiC harps	99.37%	99.88%
W harps	99.33%	99.85%

• With the W harps, the beam shooting off the target is in an order of 1 kW compared to SiC harps.

Signal strength

ess

- Negative charge deficiency
 - Secondary electron emission (SEE)
 - Ionization, diffusion of slow secondaries to the surface, subsequent escape of electrons
 - Secondary electron yield (SEY) is calculated by an empirical formula:

$$SEY = \frac{P \cdot d_s}{E^*} \frac{dE}{dz}$$

- Recoiled delta ray electrons
 - Directly calculated by FLUKA

Signal Strength

EUROPEAN SPALLATION SOURCE

Harp Material	dE/dz [MeV/cm]@2Ge V-H ⁺	Secondary electron yield	Delta ray electron yield	Total Yield	Benchmark
W	24.4	0.049	0.026	0.075	0.07 SNS: 1 GeV-H⁺
SiC	5.16	0.010	0.013	0.023	0.01 LANSCE: 0.8 GeV-H⁺

The signal from the tungsten harp is more than three times higher.

Radiation Damage

Harp Material	Max. DPA Rate [dpa/hour]	Annual Beam on Target Time	Max. DPA per Year
W	0.012	5400	64.8
SiC	0.001	5400	5.4

- The tungsten harp at SNS and the SiC harp at TS2 of ISIS have been operating without failure since its commissioning of the facilities.
- The accumulated damage dose on the harp in both facilities is roughly equivalent to one year dose at ESS.

Benchmarking Institution	Harp Material	Total Beam Energy/Charge	Accumulated Max. DPA
ORNL-SNS	W	32000 MWh	70
ISIS-TS2	SiC	1.5 Ah	3

Early failure of W-Re Harp at BLIP

- The DBTT of W-Re alloy gets higher than pure tungsten after irradiation [H. Ullmaier, F. Carsughi, NIM-B 101, 1995]
- The thermal conductivity of W-Re alloy is lower than pure tungsten, which should lead to a higher thermomechanical stress and fatigue stress amplitude [M. Rieth et al, Tech- Rep.-KIT]

Tungsten vs. SiC

Properties	Tungsten	SiC
Beam optics disturbance	-	0
Δ-ray production		-
Radiation damage limit	1 year@5 MW	1 year@5 MW
Signal strength	+	-
Surface corrosion	-	+
Operation temperature	High	Medium
Mechanical load during operation	High	Low

• Silicon Carbide is preferred for the ESS application

Proton Beam Instrumentation Plug

Aperture Monitor

EUROPEAN SPALLATION SOURCE

- Material Selection: Nickel
 - The halo monitor mounted at the direct beam upstream of KHE-2 is made of 100 um thick nickel membrane.

A. Strinning, et. al. HB2010

Signal Strength: 100 um thin Ni-Diaphram

Facility	dE/dz [MeV/cm]	Secondary Electron Yield	δ-Ray Yield	Total Yield
PSI	16.7	0.033	0.023	0.056
ESS	13.6	0.027	0.019	0.046

Negative Net-Charge Deposition

E

EUROPEAN SPALLATION SOURCE

• Δ-rays from harp and helium atmosphere

Δ -ray yield due to impinging δ -ray electrons

- The calculated $\delta\text{-rays}$ are in the energy range between 10 keV and 1 MeV
- Low energy δ -rays are stopped within the 100 um thickness of the Ni-diaphragm, creating negative net charge deposition.

Beam offset and δ -ray yield

EUROPEAN SPALLATION SOURCE

• As there are more protons bombarding the blade, the net charge yield turns to "positive"

Radiation Damage and Lifetime

E55

UROPEAN

- Benchmarking: PSI
 - Integrated beam charge up to 2010: 120 Ah
 - Maximum integrated DPA: 100
- Aperture monitor at ESS
 - Maximum damage rate: < 10 dpa/year for 27000 MWh/y
 - The lifetime of the aperture monitor is conservatively estimated to be 10 years

EUROPEAN

- Δ-ray introduces negative charge deposition in the aperture monitor intersecting halo
 - During normal operation, the aperture monitor expects to produce noise signal.
 - In case of beam offset, more protons will be intersected by nickel diaphragms, producing "positive net charge deposition."

Luminescent coating

- Luminescent coatings on PBW and target for the beam profile imaging
- Baseline material:
 - Benchmarking SNS
 - Cr (1%) doped alumina (Al_2O_3)

Proton flux at BEW

EUROPEAN SPALLATION SOURCE

• Secondary protons from the harp

Neutron and gamma flux at BEW

EUROPEAN SPALLATION SOURCE

 $\times 10^{14}$

2.6

2.4

2.2

2

1.8

1.6

1.4

4

Energy deposition and radiation damage at BEW

• The radiation damage doesn't follow the proton beam profile

EUROPEAN

SPALLATION SOURCE

BLIP Irradiation Campaign: Characterization of Luminescent Coating Materials

- The proton beam induced degradation of the luminescence has been observed at SNS, and there is a need to search for a radiation resistant coating material.
- The radiation damage induced degradation of luminescence has been confirmed with U-beam at GSI
- Candidate materials: Cr:Al₂O₃, Y₂O₃, Y₂WO₆

FUROPEAN

SOURCE

 \Rightarrow

- The SiC is chosen to be the baseline material for the harp
- The Ni-diaphragm for halo monitoring will generate noises during normal beam operation, due to δ-rays from the harp and upstream components. But, it should be able to detect the anomalous beam position offset.
- There is on-going research on the luminescent coating material. Currently, baseline material is Cr:Al₂O₃ as at SNS.

Moderator & reflector

EUROPEAN SPALLATION SOURCE

- Cold moderators
 - Hydrogen at 20 K and 1.5 MPa (super-critical pressure)
 - Vessel in aluminium alloy
 - Vacuum jacket for insulation

Water moderators

- Thermal water
- Pre-moderator surrounding the cold moderator vessel
- Extended wings to facilitate thermal or bi-spectral beam extraction

- Inner reflector
 - Beryllium
 - Water cooled
- Outer reflector
 - Steel
 - Water cooled
- Cut-outs
 - for the view path to the beam extraction
 - For the target wheel

Moderator Canister: Lifetime Estimates

Source of Damage	Operational limit	Data source
Thermal neutron fluence	1.0 a% of Si production	HFIR
DPA	40 DPA	HFIR/SNS
He production	2000 appm	PSI

Maximum production rates	AI@20K	AI@300K
H (appm/GW-d)	775	1067
He (appm/GW-d)	195	310
Si (a%/GW-d)	0.85	0.25
Displacement rate (dpa/GW-d)	9.3	28.8
Thermal neutron fluence (n/cm ² /GW-d)	2.4×10 ²²	1.2×10 ²²

- Proposed MR-plug lifetime:
 - Initially one operational year 1.0 GW-d.

Reflector Material: Beryllium

E55

EUROPEAN SPALLATION

SOURCE

- Beryllium Selection Criteria
 - Isotropic texture
 - Small grain size
 - High purity
- R&D on correlation between neutron scattering x-section and different beryllium will be launched.

G. Muhrer et al. NIMA, 2007
Reflector: Beryllium swelling and hydrogen reaction

• Swelling rate is correlated to helium production rate [ITER-EDA, ITER materials properties handbook (1998)]

73

EUROPEAN SPALLATION SOURCE

Ortho-Para Catalyst R&D

EUROPEAN SPALLATION SOURCE

Vision: ESS Spallation Neutron Irradiation Program (ESNIP): Module in Moderator

EUROPEAN SPALLATION SOURCE

- ESNIP-I (2019-2024)
 - Proof of Concept Module
 - Passively cooled by pre-moderator water flow
- ESNIP-II (2024 and on): Vision
 - Located at the hot spot position for optimal damage dose
 - Irradiation module with active temperature control
 - Larger Irradiation Volume

EUROPEAN

SPALLATION

SOURCE

255

Irradiation Module in Pre-Moderator

- Flux calculated for three different horizontal positions:
 - 0 cm, 3 cm, 6 cm from the moderator center in the beam upstream direction
 - Module radii with 1 cm and 2 cm are considered
 - Fast neutron flux: up to 9.0E14 n/cm²/s

Irradiation Module in Pre-Moderator

- The dpa and gas production rates are calculated for five different horizontal locations along the beam (= +ŷ):
 - y = -6 cm (II), -3 cm (I), 0 cm (c: moderator center), 3 cm (r), 6 cm (rr)

Irradiation Module in Pre-Moderator

• Neutronic Penalty: Up to 3% per module

• Allocated Function: Scientifically investigate the activated PIE specimen

EUROPEAN

SPALLATION

SOURCE

.

- Materials Knowledge in Target Environment Provides Support for Target Project
- External Materials R&D Collaborations are essential for the Acquirement of Materials Knowledge
- Radiation Damage Driven Lifetime Limits of Main Functional Systems are explored for Enhanced Overall System Reliability and Operational Cost Saving
- Visions of Materials R&D at ESS are studied.

EUROPEAN SPALLATION SOURCE

Thank you for your attention!

111