# SHiP Project in the Comprehensive Design Study phase and beyond

### τSHiP, vSHiP, iSHiP, dSHiP"

**Richard Jacobsson** 

Key messages:

- An SPS Beam Dump facility opens the door to many possibilities with a GPD!
- SHiP : Zero background experiment → challenging and requiring detector redundancy
- R&D and prototyping for CDS and TDR (calorimetry, see Walters talk)
- Test beams and cosmics setup

SHiP Project Structure: http://cern.ch/ship/Constitution/Project\_structure.html

## Beam Dump Facility WG

### • Critical technical studies under PBC as specified in the SHiP Technical Proposal



SHiP/Hidden Sector Workshop, LPNHE, Paris, 11 October, 2017

<u>R. Jacobsson / 2</u>

ER



Current main topic: strategy to define baseline detector for CDS

→ But CDS will not aim at selecting technologies

→ Ideal time to introduce new ideas and new contributions SHiP/Hidden Sector Workshop, LPNHE, Paris, 11 October, 2017

R. Jacobsson



## SHiP Master Schedule



| Accelerator schedule | 2015  | 2016 | 2017 | 2018 | 2019        | 2020        |       | 2021                    | 2022        | 2023          | 2024         | 2025       | 202 | 6            | 2027       |
|----------------------|-------|------|------|------|-------------|-------------|-------|-------------------------|-------------|---------------|--------------|------------|-----|--------------|------------|
| LHC                  | Run 2 |      |      | LS2  |             | Run 3       |       | LS3                     |             |               | F            | Run 4      |     |              |            |
| SPS                  |       |      |      |      |             |             |       |                         |             |               | NA stop      | SPS stop   |     |              |            |
|                      |       |      |      |      | ESPF        | <b>b</b>    |       |                         |             |               |              |            |     |              |            |
| Detector             |       |      | CD   | s    | Prototyping | , design    |       | 1940                    | duction     |               | In           | stallation |     |              |            |
| Milestones           | TP    |      |      | CDR  |             |             | TD    | ) <mark>r ///</mark> PF | RR          |               |              |            | (   | CwB Da       | ata taking |
| Facility             |       |      |      |      |             | /////linteg | ratic | on                      |             |               |              |            | (   | CwB          |            |
| Civil engineering    |       |      |      |      |             | Pre-constr  | uctio | on                      | Target - De | tector hall - | Beamline     | Junction   |     |              |            |
| Infrastructure       |       |      |      |      |             |             |       |                         |             |               | Installation |            |     | CwB:<br>Comm | issioning  |
| Beamline             |       |      | CD   | s    | Prototyping | , design    |       | Т                       | Prod        | uction        | l In:        | stallation |     | withbe       | eam        |
| Target complex       |       |      | CD   | s    | Prototyping | , design    |       | D                       | Produc      | ction         | Installa     | ation      |     |              |            |
| Target               |       |      | CD   | S    | Prototyping | , design    |       | R                       |             | Production    | ln:          | stallation |     |              |            |

• Time line for TDRs is critical  $\rightarrow$  2016 – 2018 is ON the path to TDR

• Main challenge of 2019 – 2021 is the availability of test beam facilities

- Apply for beam time at other facilities
- Investigating common cosmic test rig at CERN
  - Contributions very welcome, across experiments



- Description of the prototyping motivation and planning
- Small scale prototype → "module-0"
- Level of criticality and the time scale
- Groups participating
- Expected required resources and financial situation to achieve the plan
- Strategy presented to SPSC referees in June
- Complete draft to be discussed with SPSC referees next week
- → Including estimates on funding requests up to "Module-0"

### Approved by January 2018

SHiP/Hidden Sector Workshop, LPNHE, Paris, 11 October, 2017



This document is uncontrolled when printed. Check the EDMS to verify that this is the correct version before use.



R. Jacobsson

# Magnetization of hadron stopper

### CERN(EP, EN/STI), RAL(UK), MISiS (RU)

- Challenging in extreme environment
- Very strict constraints on integration, access, thermal and magnetic stresses, cooling circuit radio-activation
- Studies and challenges
  - Realistic field map from magnet modelling
  - Coil assembly
  - Insulation properties
  - Heat conductivity
  - · Heat removal with external heat exchangers
  - Electrical connections
  - Handling issues
  - Durability by multiple energisation
  - Radiation resistance
- Milestones
  - Reduced scale prototype-0: 2019-Q2
  - Module-0 with cooling system and final power connections: 2020-Q3





#### SHiP/Hidden Sector Workshop, LPNHE, Paris, 11 October, 2017



## Muon shield "gun"

Imperial College London(UK), MISiS(RU), RAL(UK), CERN(EP)

- Global optimization still ongoing using machine learning
- Main challenge
  - Narrow separation between field directions
  - Aiming for 1.8T field density to minimise overall length with grain oriented 0.3mm steel sheets, allowing lower power and air cooling
  - Manufacturing and assembly
- Prototyping most challenging magnet
  - Reduced scale allowing test of all aspects and produce accurate costing
- Milestones
  - Prototype-1 in test beam: 2018-Q4
  - Further prototyping depends on outcome of the first prototype



## v/iSHiP detector

Naples(IT), Bari(IT), INFN-LNF(IT), Roma (IT), INFN-Gran Sasso(IT), Nagoya(JP), Aichi(JP), Kobe(JP), Nihon(JP), Toho(JP), Kodel(KR), Gyeongsang (KR), Yandex(RU), SINP MSU(RU), LPI(RU), MISiS(RU), NRC KI (RU), METU(TR), Imperial College London(UK), EPFL(CH)

- Three global options:
  - 1. Magnetic field over emulsion and muon spectrometer
    - →  $v_{\tau}$  muonic and hadronic modes but small target mass (7 tonnes)
    - → Muon spectrometer with RPCs and straw tracker
  - 2. No magnetic field over emulsion target and muon spectrometer
    - →  $\nu_{\tau}$  muonic modes only but large target mass (28 tonnes)
    - → Muon spectrometer with RPC and straw tracker
  - 3. Extended magnetic field over emulsion and air spectrometer, and muonID
    - $\clubsuit$   $\nu_\tau$  muonic and hadronic modes AND large target mass
    - → Compact size muonID with RPCs or plastic scintillating bars or tiles
- Basic emulsion spectrometer elements
  - Target/Emulsion Cloud Chamber
  - Target tracker (100µm, ns), options SciFi or gaseous detectors (GEM,µ-RWELL, micromega)
  - In option 3, spectrometer tracker with SciFi







## v/iSHiP detector, cont'd

- Studies and challenges
  - Background studies
  - Geometric constraints
    - Muon shield optimization and dSHiP location
  - Emulsion Cloud Chamber
    - Acts as neutrino target, micrometric track reconstruction, fine grained electromagnetic calorimeter
    - Optimization of material thicknesses and absorber material
    - Develop pattern recognition by machine learning
  - Compact Emulsion Spectrometer (CES) for
    - Validation of the CES concept with data
  - Target Tracker (TT):
    - Connect tracks with spectrometer and muonID
    - High efficiency (>99%) for angles up to 1 rad
    - Act as electromagnetic and hadronic calorimeter
  - Design of magnet



- Milestones
  - Validation of technological solutions, design optimization and detector configuration: 2018-Q2
  - Construction and test of different configurations of the ECC modules at DESY: 2019-Q4
  - Full longitudinal slice of final configuration with module-0's of emulsion target with EM shower detection and spectrometer in test beam with magnet at CERN: 2021-Q2

### Vacuum vessel

Naples University (IT), MISIS(RU), NRC KI (RU), Hamburg(DE), CERN

- Vacuum option baseline, helium balloon shelved for the moment
- → Very good progress in collaboration with company
- Vacuum vessel consists of five sections
  - Front-cap
  - Decay volume
  - Straw tracker sections (x2)
  - Spectrometer magnet section including the spectrometer magnet
  - End-cap

### • Challenges

- Light-weight and "thin"
- Cost
- Manufacturing, transport and assembly
- Mechanical interfaces
- Prototyping
  - Review with experts at CERN for CDS
  - Small scale prototype (manufacturing technique, system integration): 2019-Q4
  - Module-0 including front/end-cap technology constructed and tested: 2020-Q4
  - Straw tracker sections to be prototyped with straw tracker

SHiP/Hidden Sector Workshop, LPNHE, Paris, 11 October, 2017



## Surrounding and Upstream Background Tagger

Berlin (GE), Geneva (CH), ITEP(RU), Kyiv (UA), Mainz (GE), Napoli (IT), Orsay(FR)

- Includes upstream veto system, two options
  - Liquid scintillator modules, linear alkylbenzene (LAB) with PMT or SiPM
  - Plastic scintillator with SiPM
- Studies and challenges
  - Physics requirements (large hit rates)
  - Mechanical integration
  - Optimization of light-yield (LS composition, module, dimension,
  - wall reflectivity, circulation, WLS)
  - Proof-of-principle detector for the LS-WOM detector technology
  - Granularity
  - Light-yield and detection efficiency (particle incident at small angles)
    - Layering
    - → Plastic scintillator well-known technology, synergy with other SHiP detectors

### • Milestones

LigSci

PISci

PISc

- Prototype-0 (small scale box with several WOMs) constructed and tested: 2017Q4
- LigSci • Prototype-1 (small scale box with several WOMs) constructed and tested: 2018Q4
  - Module-0 constructed and tested with cosmics: 2019Q4
  - Module-0 tested with test beam including photo-sensor and readout scheme: 2020Q2
  - Prototype-1: Construction of prototype plastic counters and tests with different SiPMs: 2019-Q2
  - Module-0 test in cosmics: 2020-Q4
  - Final tests of plastic counters at CERN: 2021-Q2

SHiP/Hidden Sector Workshop, LPNHE, Paris, 11 October, 2017

Z<sub>SBT-hit</sub>, t<sub>SBT-hit</sub>

WOM

Zvertex, tvertex

Test beam Sep 2017

### Spectrometer straw tracker Hamburg(DE), JINR Dubna (RU), Kyiv(UA), PNPI/Polytec(RU), CERN Straw tracker made up of 5m thin polyethylene terephthalate (PET) tubes

view

- 4 views (Y, U, V, Y) for each station
- Expected 10<sup>7</sup> hits/station in 1 s ==> 2kHz/straw (NA62 500 kHz/straw)
- Studies and challenges  $\odot$ 
  - Straw optimization (diameter, wire, coating, gas, HV)
  - Wire/tube sagging under gravity, strain, gas pressure, fields
  - Mechanical mounting of straw stations (assembly procedure)
  - Integration of services
  - Insertion in vacuum vessel

#### **Milestones** $\odot$

 $\odot$ 

- Prototype straw array constructed and tested: 2018-Q4
- First station: 2019-Q3
- Module-0 testing in vacuum:2020-Q1



# Spectrometer timing detector

Geneva(CH), Zurich(CH), LIP(PT), Barcelona(ES), Orsay(FR)

- Suppression of combinatorial di-muon background by coincidence with a timing resolution of ≤100 ps
- Two options

PISci

PISci

- Plastic scintillators read-out by PMT or large area SiPMs (6x6mm<sup>2</sup>)
- Multigap resistive plate chambers (MRPCs) with 6 x 0.3mm gaps Test beam May 2017
- Studies and challenges
  - Scintillating bar dimensions
  - SiPM configuration
  - Electronics
  - Timing alignment of 50 m<sup>2</sup>
  - Mechanics
  - MRPC developed for HADES
- Milestones:
  - Mechanical design and final optimization of single element: 2018-Q1
  - Prototype-1, 32 bars array (~1.7m of length): 2018-Q4
  - Module-0, 3x3 bars array (>5m of length): 2019-Q2
- MRPC Full chain prototype-1: 2017-Q4













INFN Cagliari (IT), University of Mainz (DE), LPNHE (FR)

- See Walter's talk
- Vessel end-cap material is light
- Leaves open the possibility of staging

# Downstream muon system

### INRAS(RU), MEPhI(RU), INFN-Bologna(IT), INFN-Cagliari(IT), INFN-LNF(IT)

- Two options:
  - Four stations of active layers of extruded plastic scintillator strips with WLS fibers and SiPMs separated by three muon filters
  - Single layer of scintillating tiles of 10x20x1 cm<sup>3</sup> with SiPMs
- Studies and challenges
  - Future optimization of muon system depends on strategy for PID with calorimetry and physics requirements
  - · Granularity depends on the overall multiple scattering
  - Optimization of thickness and dimensions of bars/tiles (light yield and timing studied with 3m bars in test beam)





Scintillating tile 10x10x0..6 cm<sup>3</sup>, each side equipped with 3x3mm<sup>2</sup> SiPMs

- Milestones:
  - Prototype-0 (3 m long bars with WLS fibres and SiPMs readout) constructed and tested: 2017Q4
  - Prototype-1 (scintillating tiles with direct SiPM readout) constructed and tested: 2018Q4
  - Module-0 constructed and tested with cosmics: 2019Q4
  - Module-0 tested at a test beam including final version of the FEE: 2021-Q2

SHiP/Hidden Sector Workshop, LPNHE, Paris, 11 October, 2017



### Online system





CERN, Niels Bohr(DK), Uppsala(SE), UCL(UK), Stockholm(SE), Orsay(FR)

- Main components
  - Front End (FE) electronics producing data
  - Timing controller (TFC)
  - Front End Host processes (FEH)
  - Event Filter processes (EFF)
  - Switched network, PCs, storage
- Studies and challenges
  - Data transport and format
  - System simulations
  - Online event reconstruction
  - Real-time event filter



- Milestones
  - DAQ demonstrator: 2018-Q1
  - Complete slice of online system (ECS, TFC, DAQ): 2020-Q1





Orsay(FR)

## Common electronics and services



### • SHiP electronics coordinators Jihane Maalmi and Dominique Breton

- Electronics contacts appointed per subsystem
- First electronics workshop October 25
- A very good time to define system architecture, investigate commonality, and evaluate existing solutions
  - How far upstream can commonality be defined considering today's programmability?
- No problem with huge data rates, synchronization, radiation, cooling, space constraints, access... just the opposite of what we are mostly faced with... only very scattered
  - Commercial, integrated, programmable, cheap, luxury...!
- Experimental infrastructure specs by end of the year for BDF integration and service studies





## Computing



Or Computing framework based on FairRoot → FairSHiP

### • Task list

- Data base, the usage of time / version dependent conditions in the simulation / reconstruction
- Job submission at Yandex or on the Grid, DIRAC-like
- Methods of speeding up simulation of muon background
- Detector digitization
- Proper simulation of event time in the context of DAQ
- Reconstruction (muon flux and charm measurement)
- Online event filtering







### <u>Opportunity for $\tau \rightarrow 3\mu$ </u>

- Studies and challenges  $\odot$ 
  - Parallel operation with iSHiP and dSHiP most efficient!
  - Radiological aspects
  - Additional experimental cavern •
  - Slightly longer transfer line to target complex (15-20m drift space)
  - Experiment-machine interfaces
  - → Simulations needed!
  - → Very interesting and challenging technologically





TT20



60 beam envelope incl. 5 mm orbit deviation and 10% beta beating -> RMS 3mm

SHiP/Hidden Sector Workshop, LPNHE, Paris, 11 October, 2017

### R. Jacobsson



## Conclusions



### Deck is open for discussion!

- A very intense and vivid program of work ahead in CDS and beyond
- Contributions welcome in a very large number of areas



## Magnet design

Magnet design for TP (April 2015) was done by Davide Tommasini and his team ("LHCb-like")

- → Stand alone design, no integration with vacuum vessel
- Magnet designed with emphasis on low power
  - Design for 0.65 Tm with upgrade up to 1 Tm

| Parameter                                  | Value                                             |
|--------------------------------------------|---------------------------------------------------|
| Free aperture                              | $5.10 \ge 10.35 m^2$                              |
| Current density                            | $1.5 \ A/mm^2$                                    |
| Conductor (Al-99.7)                        | $50 \mathrm{x} 50 \mathrm{ m} m^2 \mathrm{Al-XX}$ |
| Central field                              | 0.15 T                                            |
| Bending power $(0, 0, \pm 2.5m)$           | $0.65 \ Tm$                                       |
| Operating current                          | 3000 A                                            |
| Estimated power consumption                | 1 MW                                              |
| Yoke mass                                  | $820 \ tons$                                      |
| Coil mass                                  | $2x32 \ tons$                                     |
| Number of coils                            | 2                                                 |
| Number of pancakes per coil                | 10                                                |
| Number of turns per pancake                | 12                                                |
| Total water flow @ $\Delta T = 14^{circ}C$ | $65  m^3/h$                                       |
| Diameter of cooling hole                   | 25 mm                                             |
| Pressure drop                              | $11 \ bar$                                        |
|                                            |                                                   |

D. Tommasini, E. Solodko, A. Sanz Ull

ER



SHiP/Hidden Sector Workshop, LPNHE, Paris, 11 October, 2017



## **CDS** Global optimization





