CODEX-b :

expanding LHCb'’'s capabilities

for long lived particle searches
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L O C at i O n DELPHI CODEX-b box
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Minimal proof-of-concept geometry

One box face
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10x10x10 metre box, with 6 RPC layers on each box face. Assume 1 cm granularity
for the RPCs, and possibility of timing information (explored later in talk).

Add 5 other triplets of RPC layers equally spaced in box to minimize the
distance to the first measured point for the decay vertex determination.




Example model 1 — b—sX
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Example model 2 — H— oo
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Extends LHCb coverage far beyond ATLAS at low masses, competitive&complementary

at higher ones. MATHUSLA has greater reach but backgrounds are uncorrelated.



Mass reconstruction using time-of-flight

100 ps 50 ps
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Now assume 100/50 ps time resolution (per hit) in the tracking stations. The

B-KX signals are actually slow enough that we can reconstruct the X mass..






LHCDb already complements ATLAS/CMS

+ Obvious disadvantage: LHCDb
collects less data than ATLAS/
CMS and has worse
acceptance for several
searches
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+ But softer triggers (for _;
instance, can trigger detached }
di-muons with pr~1 GeV/c),
other advantages already
mentioned
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excluded areas where the limit set |
for H = nvnv is smaller than 50% |
the SM Higgs (plot by M. Borsato) |

+ In practice that means we can |
look into complementary '
phase space regions

Many thanks to Xabier for the slide from our recent HL-LHC discussions!




So is something more needed?

B pp~ ATLAS/CMS (300/fb) vs LHCb (15/fb), 95% CL s
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LHCb reach worked out in certain scenarios, above showing two of them — you can
see again that we can complement ATLAS/CMS for very light signals, up to a

certain cT region which 1s basically limited by the position of the TT where we
need hits for a momentum measurement. Can we expand towards larger cT values?



https://arxiv.org/abs/1708.05389
https://arxiv.org/abs/1509.06765
https://arxiv.org/abs/1603.08926

Integration with LHCb

It is highly desirable to treat CODEX-b as an additional subdetector of
LHCb, and to integrate it into the DAQ & readout.

Allows events which look interesting in CODEX-b (whose rate is low by
definition) to be saved in LHCb as well. If we see a signal we could then
look at the event in LHCb and see if an interesting tag exists there.

You may think Phase Il pileup would make this prohibitive, but that is
not an immediate showstopper if both CODEX-b and LHCb give precise
timing information.

A tricky bit is that CODEX-b “events” are offset by around ~80 ns wrt.
the LHC collision which produced them, but should be manageable.



Minimal shield & veto design

CODEX-b UXA shield
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Simple design : use first part of the shield to attenuate muon & neutral hadron
backgrounds which could enter the detector volume and scatter or decay within

it, faking a signal. Then use a thin veto layer to eliminate secondary production
of backgrounds within the shield itself.



Basic GEANT background estimate

Particle yields
BG species  |irreducible by | reducible by | Baseline Cuts
shield veto shield veto
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Simulate initial background flux with Pythia 8, propagate through
shield, air, and detector using GEANT4. A few things to note :

— Nominally largest background is neutrons entering the box
— Muon-air interactions can be vetoed using front detector faces
— Neutrino backgrounds are entirely negligible.

No attempt yet to use any properties of reconstructed backgrounds
to reject them, but timing + spatial information should help there.



Energy spectrum of backgrounds
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Data driven background calibration

Cosmics will be used for spatial & time detector alignment and their negligible
contribution can be calibrated from this.

Other backgrounds can be measured by putting a small telescope in the LHCb
cavern and measuring background rates with different shield thicknesses.
Could be done as an engineering run well ahead of full detector construction.



Tracker efficiency estimate
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Bottom line : these are 0(1l) numbers, not 0(%), can be optimized further



Boost reconstruction
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Reconstruct parent boost from the measured decay vertex (no timing!), assuming
relativistic decay products. The resolution 1s < 1% (entirely dominated by

distance to first measured point, not detector granularity) so the boost
distribution is dominated by the generated spread of boosts, not resolution.




Boost reconstruction
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Different intial states give different boost distributions; perhaps

surprisingly we have some discriminating power between even the B->KX scenarios.



Complementarity with other searches

CODEX-b can cover a significant portion of parameter space for well-

motivated, simple portals, and extend LHCb's reach for long lived particles
well beyond ATLAS/CMS.

CODEX-b has to cover around 1/100th of MATHUSLA's tracking area (but of
course does not have as large an absolute reach).

If you believe the physics case for LLP detection is worthwhile, allocating
funds for a detector which is relatively simple to build, has complementary
reach to more ambitious proposals, and has completely different
backgrounds would seem prudent, particularly if someone sees a signal.



Next steps

— Develop a more realistic proposal for the detector.
— Understand better how low we can realistically track in momentum.
— Work out the reach in some additional models of NP.

— Hopefully survive all these steps without a showstopper and
contribute to the upcoming LLP physics white paper.

It is of course largely up to you : does this sound interesting? Would
you like to collaborate on it?



