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Il. UNDERSTANDING THE
ASTROPHYSICAL NATURE OF DARK
MATTER
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Zoom Sequence of DM Structure from 100 Mpc Scale Milky Way-like Halo and Several Sub-Halos

a

« We can probe DM by looking for
signal contributions from halos:

« On cosmological scales (left)

* In the Milky Way virial radius

(~300 kpc = ~1 MLY, right) Left: Boylan-Kolchin+ (2009) Right: Springel+ (2008)
(Visible size of MW = ~ 20 kpc)




Understanding the Astrophysical Nature of DM

https://Isstdarkmatter.qgithub.io/
cold dark matter warm dark matter

-

Lovell+ (2012) -

« Wide-area surveys (DES, Pan-STARRS, Gaia, LSST) identify and
characterize DM-dominated structures

* Modern numerical simulations improve our understanding of the
dependence on cosmology, DM particle properties, “baryonic” effects in
structure formation
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“Warm” DM, e.g., from a ~keV
sterile v, would wash out
structures smaller than about
108 Mg

However, < 108 Mg sub-halos
are very unlikely to form stars

Sub-structure searches in
strong gravitational lenses will
be sensitive down to 10° to
10" Mg
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See also, e.g., Hezevah+ (2016)
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Also, consider cosmological effects of annihilation/ decay products on
environment: e.g., Shirasaki+ (2016), Slatyer+ (2017)
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» Note: J-factor includes distance, i.e., J-factor would decrease by four if a
point-like source were twice as far away

* Note: the key factor of 1/mX2 is b/c we express the J-factor as a function
of mass density (which we can measure), not number density
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Galactic Center .
Satellites Milky Way Halo

Isotropic contributions

Features in y-ray and

) Galaxy Clusters
cosmic-ray spectra

Dark Matter simulation: Pieri+ (2011)
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DM Density v. Temperature
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Small cross-section:
freeze out too early,
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-8
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10-12 Freeze out Large cross-section:
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10— 14 too few WIMPs
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« The calculation of the thermal-averaged cross-section <ov> needed to
obtain the relic density is robust and gives <ov> ~ 3 1026 cm3s-'

« At that cross-section we are probing the entire class of particle models
that would generate GeV-to-TeV dark matter

15
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Astrophysical Backgrounds (GeV)

« Diffuse Backgrounds: « Source Backgrounds:
« Cosmic-ray interactions with * Pulsars
interstellar matter and radiation « Blazars and Active Galactic
HEO Nuclei

« Supernova Remnants
« (Galaxies (starburst galaxies)

« Unresolved Sources
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Unresolved Sources

These two images contain roughly
the same number of y rays, but in
the top left they are truly randomly
distributed, in the bottom right
they are produced by individual
sources that we can not resolve.

200 400 600 800
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Satellites Galactic Center Milky Way Halo
Low background and good Good statistics, but source Large statistics, but diffuse
source id, but low statistics confusion/diffuse background

background

Spectral Lines

. . L Isotropic contributions
Little or no astrophysical uncertainties, good

Large statistics, but astrophysics,

source id, but low sensitivity because of Galactic diffuse background

expected small branching ratio Galaxy Clusters . . o
. L. Dark Matter simulation: Pieri+
Low background, but low statistics 2011PhRVD..83b3518P
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Search Strategies (against the y-ray Sky)

' Galactic Center :
Satellites e Milky Way Halo
Low background and good Good statistics, but source . i
i ) Large statistics, but diffuse
source id, but low statistics confusion/diffuse background

background

EaE - -

o i
AR

Spectral Lines _
Little or no astrophysical uncertainties, good

Isotropic contributions
Large statistics, but astrophysics,
Galactic diffuse background

source id, but low sensitivity because of
expected small branching ratio Galaxy Clusters
Low background, but low statistics LAT 7 Year Sky > 1 GeV
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Summary of Results from Indirect-Detection DM
Searches as of Fall 2015

X -> bb channel
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Summary of Dark Matter Searches with Fermi

Comparison of measured upper limits on annihilation of dark matter in dwarf satellite
galaxies with annihilation interpretation of the GC excess

1022 —

— dSphs: Ackermann+ (2015)

10-23 |

Daylan+ (2014)
— Gordon & Macias (2013)
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Thermal Relic Cross Section
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The Milky Way Galactic Center GeV “Excess”

Recent papers: Gordon & Macias (2013) , Abazajian+ (2014), Calore+ (2015), Daylan+ (2016),
Ajello+ [LAT Clb] (2016)

The goal is to look for DM in the inner Galaxy
Because of the large astrophysical foregrounds, we must first understand the y-
ray emission from the Galaxy and from known source classes

22



@, ermi Galactic Center GeV Excess

GC excess, allcases

—— Ajello et al (2016) (fit intensity) © © Gordon & Macias (2013)

| — Aello et al (2016) (fit index) ¢ ¢ Calore etal (2015)
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Ackermann et al. (2017
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The presence of an y-ray excess with respect to the modeled diffuse
emission at the Galactic center at a few GeV is well established

However, the characteristics (and the interpretation) of the excess
depend on the modeling of the astrophysical fore/background

23



Galactic Center Excess as Unresolved Sources
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Bartels+ (2016) Lee+ (2016)
In 2016, two groups analyzed statistical fluctuations in the Galactic center excess

and found that it appears to consist of numerous unresolved point sources, not
the sort of smooth halo we would expect from a dark matter signal



Known Satellites of the Milky Way

Segue 1 Recent papers:
Keck Observatory Ackermann+ [LAT ClIb] (2015)
' : : Drlica-Wagner+ [LAT + DES Clbs] (2015)

Albert+ [LAT CIb] (2017)
Geringer-Sameth+ (2019)

* Look for y-ray emission from Dwarf spheroidal galaxies (dSphs), which are the

most dark matter dominated objects known
 This is a moderate-signal, low-background search strategy

25
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Dwarf Spheroidal Satellites of the Milky Way
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The Milky Way is
surrounded by small
satellite galaxies

Close to Earth
(25 kpc to 250 kpc)

Optical Luminosities
range from 103 to 107 L

Astrophysically inactive
Most dark matter

dominated objects
known
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Discovery Timeline: Milky Way Satellite Galaxies
ol 50 |
DES Year 2 Data:
Drlica-Wagner+(2015)

40 40 L T .
5 DECam DES Year 1 Data:
rg Bechtol+ (2015)
)
% 301 1 Koposov+ (2015)
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10 ]

e Confirmed
o Candidate
120 1940 1960 1980 2000 2020

Year

« Advent of deep, digital survey era in optical astronomy has led to the
discovery of numerous new Milky Way-satellite dwarf galaxies

 LSST & other surveys will continue to find new dwarf galaxies after the
Fermi mission
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Albert+ [LAT & DES] (2017)

(0.5 GeV - 1.6 GeV

Draco

1.6 GeV - 5.0 GeV

NFW scale radius
PSF containment (68%,98%)

5.0 GeV - 15.8 GeV
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Significance v. DM mass for dSph targets for the bb and Tt annihilation channels
7. — IndusII + = — Indus II
T T
8t bb = Tucana III 8t = Tucana III
= Reticulum II = Reticulum II
— Tucana IV —— Tucana IV
6l B 84% Containment 6 I 84% Containment |

97.5% Containment 97.5% Containment

N 0
S =y
Albert+ [LAT & DES] (2017)
2F 2 4
0 0 104
DM Mass (GeV) DM Mass (GeV)

« Here we have highlighted the 4 dSphs that fall outside the 95%
containment band for any DM particle mass
« Note: these are NOT the 4 dSphs with the highest J-factors
« Caveat: for the faintest dSphs the J-factors can be quite uncertain
(> 0.4 dex)
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Joint Fitting Results from dSphs

Upper limits from joint analysis of all dSphs

10-28 —
f —— Ackermann et al. (2015)
| —— Nominal sample
10-24L ~ Median Expected
F I 68% Containment
fon " 95% Containment
| L
®
@, 107%} E
= -
© S
S—" T~
> - 49— s Thermal Relic Cross Section |
\b/ 10_26 3 (Steigman et al. 2012) .
10—27 s ]
5 bb
L] | L]
10t 102 103 10*

Albert+ [LAT & DES] (2017)

DM Mass (GeV)

Stacked analysis of a “nominal sample” of confirmed dSphs is well within

the expectation band for null hypothesis and is in mild tension with DM
interpretations of GC excess



@, ermi Searches for Dark Satellites

» Approximately 1/3 of
Fermi-LAT catalog
sources are
“Unassociated”

 This means that we
cannot clearly identify
a multi-wavelength
counterpart.

« Searches for “dark”
satellites requiring:

* No counterpart
 DM-like spectra
* No variability

« Spatial extension
(optional)

31

Fraction of Halos without Stars as a Function of Mass

Searches: Berlin+ (2014), Bertoni+ (2015),
Ciuca+ (2018)

AP-L1
centrals

10° 10"
IV|200 [Msun]

1.0

Fraction

10"

Fattahi+ (2016)




IV. AXION AND AXION-LIKE
PARTICLE SEARCHES
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Blazar

Indirect Detection of Axions and Axion-Like
Particles

Supernova
Other constraints based

on inferences from stellar
lifetimes, structure
formation,

CMB fluctuations, ...

% Search for prompt y-rays
from supernova core
collapse

Search for reduced opacity, spectral
features and correlation with high
energy neutrinos from distance

(z >~ 1) blazars
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Axion/ALP Results

Excluded Regions in Axion/ALPs Mass-Coupling Constant Plane
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Irastorza & Redondo (2018)
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» Indirect detection searches of most promising DM targets have not
found any compelling signals.

» (Galactic center excess can be explained as emission from unresolved
pulsars, DM interpretation is not required.

« Excesses from particular dwarf galaxies are consistent with sub-
threshold unresolved sources.

« Current limits exclude the thermal relic cross section up to ~100GeV.
» Best astrophysical constraints on ALPs come from ALP-photon mixing

* Numerical simulations, large scale surveys have improved our
understanding of structure formation, mass distribution and other
properties of DM halos
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Looking Forward

Cerenkov Telescope Array (CTA)

« Existing experiments (Fermi, IACTs, HAWC) will continue to push
sensitivity at thermal relic cross section to higher masses

 New optical survey (e.g., LSST) telescopes are coming online that will
find more dark matter targets and better quantify the dark matter in
existing targets
« In particular, strong lensing will improve our understand of halo
mass function

 New ground-based high-energy y-ray telescope array (CTA) that will
search for y rays from dark matter annihilation to much higher energies

than Fermi. (See talk by Morselli).
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Dark Matter Sensitivity, circa 2025

Comparison of Projected Limits with Direct-Detection and Collider Limits
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